Tenstorrent/tt-metal v0.58.0-rc3版本技术解析
Tenstorrent/tt-metal是一个专注于高性能计算和AI加速的开源项目,它提供了针对Tenstorrent硬件架构优化的底层计算库和工具链。该项目通过精细的硬件控制和高效的算法实现,为深度学习推理和训练提供了强大的加速能力。
本次发布的v0.58.0-rc3版本带来了多项重要改进和新功能,主要集中在性能优化、功能增强和系统稳定性方面。下面我们将详细解析这些技术更新。
核心架构改进
本次版本对系统底层架构进行了重要调整,移除了DispatchMemMap单例模式,将其所有权转移至MetalContext。这一改动使得内存映射管理更加清晰,减少了全局状态带来的复杂性,提高了系统的可维护性和可扩展性。
在设备管理方面,修复了多N150设备环境下ttnn.CreateDevice的问题,确保在多设备场景下能够正确初始化和管理硬件资源。同时,数据库中的设备ID跟踪机制也得到了优化,确保测试运行间的隔离性。
性能优化与硬件控制
新版本引入了DRAM预取器的性能模式支持,允许根据不同的工作负载特点选择最优的预取策略,从而提升内存访问效率。针对WH/BH架构,实现了原地Halo多播功能,优化了数据在核心间的传输效率。
在硬件控制层面,修正了RISCV_SOFT_RESET_0_BRISC的值偏移问题,确保软复位操作能够正确执行。同时,移除了RMS中持久性缓冲区tt_stats的释放操作,避免了潜在的内存管理问题。
深度学习模型支持
本次更新显著增强了对计算机视觉模型的支持,特别是YOLO系列模型。新增了yolov8s_world模型的演示功能,并优化了yolov8x和yolov9c模型的跟踪性能。这些改进使得Tenstorrent硬件能够更高效地运行这些流行的目标检测模型。
在算子支持方面,增加了对整数类型零比较操作的支持,扩展了系统的数值处理能力。同时实现了单核排序功能(ttnn.sort),为数据处理流程提供了更多灵活性。
多设备与分布式计算
一个重要的架构演进是TTNN与TT-Mesh的集成,通过暴露原生多设备后端给TTNN,使得分布式计算能力能够更直接地被上层框架利用。这一改进为大规模模型训练和推理提供了更好的支持。
针对6U系统,新增了完整的网格带宽测试,帮助开发者更好地理解和优化大规模硬件配置下的通信性能。同时,改进了多核argmax操作的实现,使其能够支持任意维度和形状的输入张量。
开发工具与测试改进
在开发工具方面,新版本限制了xtensor-blas依赖的范围,减少了不必要的依赖关系。同时,改进了性能分析工具,能够生成每个核心的操作到操作时间CSV,为性能调优提供了更详细的数据。
测试基础设施也得到了增强,包括将FD测试迁移到CIv2环境,调整了测试超时设置,以及改进了测试固件代码的去重处理,提高了测试的可靠性和可维护性。
总结
Tenstorrent/tt-metal v0.58.0-rc3版本通过底层架构优化、性能提升和功能扩展,进一步强化了其作为高性能AI加速平台的能力。特别是对YOLO系列模型的深度支持和多设备计算能力的增强,使其在计算机视觉和分布式计算场景下表现更加出色。这些改进为开发者提供了更强大、更稳定的硬件加速能力,同时也为未来的功能扩展奠定了坚实的基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00