TensorRT中使用Polygraphy工具时避免标记所有输出的注意事项
2025-05-21 19:22:23作者:农烁颖Land
在使用NVIDIA TensorRT进行模型优化和推理时,Polygraphy是一个非常实用的工具,可以帮助开发者验证模型转换的正确性。然而,在使用过程中需要注意一些关键参数的使用方式,否则可能会导致模型构建失败。
问题现象
当用户尝试使用以下命令运行Polygraphy工具时遇到了错误:
polygraphy run model.onnx --trt --validate --trt-outputs mark all --save-results=trt_out.pkl
系统报错显示:
[E] 2: [myelinBuilderUtils.cpp::operator()::752] Error Code 2: Internal Error ([ShapeHostToDeviceCopy 0] requires bool or uint8 I/O but node can not be handled by Myelin. Operation is not supported.)
[!] Invalid Engine. Please ensure the engine was built correctly
问题分析
这个错误的核心原因是使用了--trt-outputs mark all参数。这个参数会强制TensorRT将所有层的输出都标记为网络输出,这会带来两个主要问题:
-
破坏图优化:TensorRT的一个重要特性是能够对计算图进行各种优化和融合操作。当标记所有层为输出时,这些优化将无法进行,因为优化通常需要合并或重组计算图中的节点。
-
不支持的层类型:某些层(如ShapeHostToDeviceCopy)需要特定的数据类型支持(bool或uint8),当这些层被强制标记为输出时,可能会遇到Myelin引擎不支持的情况。
解决方案
正确的做法是:
-
避免使用mark all:除非有特殊需求,否则不应该标记所有层为输出。这会严重影响TensorRT的优化能力。
-
选择性标记输出:如果确实需要检查某些中间层的输出,应该明确指定这些层的名称,而不是使用"all"。
-
使用默认行为:大多数情况下,只需让TensorRT自动处理输出标记,这样能获得最佳性能。
最佳实践建议
-
性能优先:让TensorRT自由地进行图优化通常会带来更好的性能表现。
-
调试策略:如果需要进行调试,可以考虑:
- 使用TensorRT的逐层分析工具
- 分阶段构建网络
- 使用更精细的输出标记策略
-
版本兼容性:确保使用的TensorRT版本(如8.6.1.6)与CUDA(11.6)、cuDNN(8.6.0)等组件版本兼容。
通过遵循这些实践,可以避免类似的构建错误,同时充分发挥TensorRT的优化潜力,获得最佳推理性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
141
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111