TensorRT中使用Polygraphy工具时避免标记所有输出的注意事项
2025-05-21 07:10:19作者:农烁颖Land
在使用NVIDIA TensorRT进行模型优化和推理时,Polygraphy是一个非常实用的工具,可以帮助开发者验证模型转换的正确性。然而,在使用过程中需要注意一些关键参数的使用方式,否则可能会导致模型构建失败。
问题现象
当用户尝试使用以下命令运行Polygraphy工具时遇到了错误:
polygraphy run model.onnx --trt --validate --trt-outputs mark all --save-results=trt_out.pkl
系统报错显示:
[E] 2: [myelinBuilderUtils.cpp::operator()::752] Error Code 2: Internal Error ([ShapeHostToDeviceCopy 0] requires bool or uint8 I/O but node can not be handled by Myelin. Operation is not supported.)
[!] Invalid Engine. Please ensure the engine was built correctly
问题分析
这个错误的核心原因是使用了--trt-outputs mark all参数。这个参数会强制TensorRT将所有层的输出都标记为网络输出,这会带来两个主要问题:
-
破坏图优化:TensorRT的一个重要特性是能够对计算图进行各种优化和融合操作。当标记所有层为输出时,这些优化将无法进行,因为优化通常需要合并或重组计算图中的节点。
-
不支持的层类型:某些层(如ShapeHostToDeviceCopy)需要特定的数据类型支持(bool或uint8),当这些层被强制标记为输出时,可能会遇到Myelin引擎不支持的情况。
解决方案
正确的做法是:
-
避免使用mark all:除非有特殊需求,否则不应该标记所有层为输出。这会严重影响TensorRT的优化能力。
-
选择性标记输出:如果确实需要检查某些中间层的输出,应该明确指定这些层的名称,而不是使用"all"。
-
使用默认行为:大多数情况下,只需让TensorRT自动处理输出标记,这样能获得最佳性能。
最佳实践建议
-
性能优先:让TensorRT自由地进行图优化通常会带来更好的性能表现。
-
调试策略:如果需要进行调试,可以考虑:
- 使用TensorRT的逐层分析工具
- 分阶段构建网络
- 使用更精细的输出标记策略
-
版本兼容性:确保使用的TensorRT版本(如8.6.1.6)与CUDA(11.6)、cuDNN(8.6.0)等组件版本兼容。
通过遵循这些实践,可以避免类似的构建错误,同时充分发挥TensorRT的优化潜力,获得最佳推理性能。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492