Knative Extensions Eventing Kafka Broker 安装与配置指南
1. 项目基础介绍
Knative Extensions Eventing Kafka Broker 是一个开源项目,它提供了一个基于 Apache Kafka 的替代 Kafka Broker 实现。该项目是 Knative 生态系统的一部分,用于支持事件驱动的架构。Eventing Kafka Broker 允许用户通过 Kafka 作为事件源,来接收和处理事件。项目主要使用 Go 和 Java 编程语言。
2. 项目使用的关键技术和框架
关键技术:
- Knative:一个基于 Kubernetes 的平台,用于构建、部署和管理现代 serverless 应用程序。
- Apache Kafka:一个分布式流处理平台,用于构建实时数据管道和应用程序。
关键框架:
- Kubernetes:用于自动部署、扩展和管理容器化应用程序的开源系统。
- Go:用于构建 Eventing Kafka Broker 的主要编程语言,提供了高性能的并发处理能力。
- Java:部分组件可能使用 Java 语言开发,用于与 Kafka 集成。
3. 项目安装和配置的准备工作与详细步骤
准备工作:
-
确保您的系统上已经安装了以下软件:
- Docker:用于运行容器。
- Kubernetes:用于部署和管理应用程序。
- kubectl:用于与 Kubernetes 集群进行交互的命令行工具。
- Helm:用于管理 Kubernetes 应用的包管理工具。
-
准备一个 Kubernetes 集群,可以是本地 Minikube 集群或云提供商的集群。
-
确保您有权限在 Kubernetes 集群上进行操作。
安装步骤:
-
克隆项目仓库:
git clone https://github.com/knative-extensions/eventing-kafka-broker.git cd eventing-kafka-broker -
安装 Knative(如果尚未安装):
# 安装 Knative 命令行工具 go install github.com/knative/kn/cmd/kn@latest # 部署 Knative 到您的 Kubernetes 集群 kn install --namespace knative-eventing --overwrite -
部署 Eventing Kafka Broker:
# 使用 Helm 部署 Eventing Kafka Broker helm install eventing-kafka-broker charts/knative-eventing-kafka-broker \ --namespace knative-eventing \ --create-namespace \ --values values.yaml其中
values.yaml文件包含了 Eventing Kafka Broker 的配置信息,您可以根据自己的需求进行修改。 -
验证安装:
部署完成后,您可以使用以下命令检查 Eventing Kafka Broker 的部署状态:
kubectl get pods -n knative-eventing查找与 Eventing Kafka Broker 相关的 Pod,确保它们都处于运行状态。
-
配置 Kafka:
如果您需要连接到特定的 Kafka 集群,您需要在
values.yaml文件中配置 Kafka 的连接信息,并重新部署 Helm chart。 -
使用 Eventing Kafka Broker:
一旦 Eventing Kafka Broker 成功部署,您就可以开始使用它来接收和处理 Kafka 事件了。具体的使用方法请参考项目的官方文档。
完成以上步骤后,您应该已经成功安装和配置了 Knative Extensions Eventing Kafka Broker。您可以开始构建和部署基于事件驱动的应用程序了。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00