ESPHome Stream Server 项目教程
1. 项目的目录结构及介绍
esphome-stream-server/
├── components/
│ └── stream_server/
│ ├── __init__.py
│ ├── stream_server.cpp
│ └── stream_server.h
├── LICENSE
├── README.md
└── example_config.yaml
目录结构介绍
-
components/stream_server/: 该目录包含了
stream_server
组件的核心代码,包括 C++ 源文件和头文件。__init__.py
: Python 初始化文件,用于标识该目录为一个 Python 包。stream_server.cpp
: 组件的主要实现代码,负责处理串口数据与 TCP 数据之间的转换。stream_server.h
: 组件的头文件,定义了组件的接口和数据结构。
-
LICENSE: 项目的开源许可证文件,通常为 MIT 许可证。
-
README.md: 项目的说明文件,包含了项目的概述、使用方法和配置说明。
-
example_config.yaml: 示例配置文件,展示了如何配置
stream_server
组件。
2. 项目的启动文件介绍
项目的启动文件主要是 stream_server.cpp
,该文件实现了 stream_server
组件的核心功能。以下是该文件的主要功能介绍:
-
初始化串口: 在启动时,
stream_server
组件会初始化指定的串口,并设置相应的波特率、数据位、停止位等参数。 -
创建 TCP 服务器: 组件会创建一个 TCP 服务器,监听指定的端口(默认端口为 6638)。当有客户端连接时,组件会将串口数据转发给客户端,并将客户端发送的数据写入串口。
-
数据缓冲区管理: 组件内部维护了一个数据缓冲区,用于存储从串口读取的数据。缓冲区的大小可以通过配置文件进行调整。
-
连接状态管理: 组件提供了一个二进制传感器,用于指示当前是否有客户端连接。此外,还提供了一个数值传感器,用于显示当前连接的客户端数量。
3. 项目的配置文件介绍
项目的配置文件通常是一个 YAML 文件,用于配置 stream_server
组件的各项参数。以下是一个示例配置文件的内容:
external_components:
- source: github://oxan/esphome-stream-server
uart:
id: uart_bus
baud_rate: 115200
data_bits: 8
parity: NONE
stop_bits: 1
stream_server:
uart_id: uart_bus
port: 1234
buffer_size: 2048
binary_sensor:
- platform: stream_server
connected:
name: "Connected"
sensor:
- platform: stream_server
connection_count:
name: "Number of Connections"
配置文件说明
-
external_components: 指定外部组件的来源,这里是
esphome-stream-server
组件的 GitHub 仓库。 -
uart: 配置串口参数,包括串口 ID、波特率、数据位、校验位和停止位。
-
stream_server: 配置
stream_server
组件的参数,包括串口 ID、监听端口和缓冲区大小。 -
binary_sensor: 配置一个二进制传感器,用于指示当前是否有客户端连接。
-
sensor: 配置一个数值传感器,用于显示当前连接的客户端数量。
通过以上配置,stream_server
组件可以实现串口数据与 TCP 数据之间的双向传输,并提供连接状态的监控功能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









