ChatGLM4 采用 tiktoken 替代 sentencepiece 的技术解析
2025-06-04 09:19:36作者:凌朦慧Richard
在 ChatGLM 系列模型的迭代过程中,从 ChatGLM3 到 ChatGLM4 的一个重要技术变更是将分词器从 sentencepiece 替换为 tiktoken。这一调整并非随意为之,而是基于技术层面的深入考量。本文将详细解析这一变更背后的技术逻辑及其优势。
分词器的核心作用
分词器(Tokenizer)是大语言模型预处理文本的关键组件,负责将原始文本转换为模型可处理的 token 序列。分词器的性能直接影响模型的训练效率、推理速度以及处理多语言和特殊字符的能力。
sentencepiece 与 tiktoken 的对比
sentencepiece 的特点
sentencepiece 是一种流行的分词工具,支持多种分词算法,如 BPE(Byte Pair Encoding)和 unigram。它的主要优势在于:
- 语言无关性:无需依赖预分词,可直接从原始文本学习词汇表。
- 灵活性:支持子词(subword)和字符级分词,适合处理形态丰富的语言。
然而,sentencepiece 在某些场景下存在局限性:
- 编码效率较低:对于某些语言或特殊字符,生成的 token 序列可能较长,影响模型的计算效率。
- 对字节级数据的支持不足:在处理二进制数据或混合编码文本时表现不佳。
tiktoken 的技术优势
tiktoken 是 OpenAI 开发的一种基于 BPE 的分词器,其核心改进在于 byte-level BPE 技术。以下是其关键技术优势:
-
更高的编码效率
- byte-level BPE 直接操作字节流,能够更紧凑地表示文本,减少 token 序列的长度。
- 对于多语言混合文本或特殊符号(如 emoji、数学符号),tiktoken 生成的 token 更少,从而提升模型的计算效率。
-
更好的泛化能力
- 由于直接处理字节,tiktoken 能够无缝支持任何 Unicode 字符,包括罕见符号或新引入的 emoji,而无需更新词汇表。
- 这一特性使得模型在处理多样化文本时更加鲁棒。
-
与 OpenAI 生态的兼容性
- tiktoken 是 OpenAI 系列模型(如 GPT-4)的分词器,采用相同技术可以更好地与现有工具链兼容,便于模型对比和迁移。
ChatGLM4 选择 tiktoken 的深层原因
-
性能优化
- ChatGLM4 作为更强大的模型,需要处理更复杂的文本数据。tiktoken 的 byte-level BPE 能够显著减少长文本的 token 数量,从而降低计算开销,提升推理速度。
-
多语言支持
- 随着 ChatGLM 应用场景的扩展,对多语言的支持变得尤为重要。tiktoken 的字节级处理能力使其在混合语言文本中表现更优。
-
未来扩展性
- tiktoken 的设计更适应未来模型规模的扩展,尤其是在处理超长文本或高密度信息时更具优势。
总结
ChatGLM4 从 sentencepiece 转向 tiktoken 是技术迭代的必然选择。tiktoken 的 byte-level BPE 技术提供了更高的编码效率、更强的泛化能力以及更好的多语言支持,这些特性对于提升大规模语言模型的性能至关重要。这一变更不仅优化了 ChatGLM4 的现有能力,也为未来的功能扩展奠定了坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1