SPANet 的安装和配置教程
2025-05-24 11:03:06作者:盛欣凯Ernestine
1. 项目基础介绍和主要编程语言
SPANet 是一个开源项目,该项目为 2024 年 WACV 会议论文“Interpretable Object Recognition by Semantic Prototype Analysis”(通过语义原型分析的可解释对象识别)提供官方代码。该项目的主要目的是实现一种可解释的对象识别方法,通过分析语义原型来提高识别的准确性。主要编程语言为 Python。
2. 项目使用的关键技术和框架
该项目使用了以下关键技术和框架:
- PyTorch:一个流行的深度学习框架,用于构建和训练神经网络模型。
- CUDA:NVIDIA 的并行计算平台和编程模型,用于加速深度学习任务的计算过程。
- CLIP:一种基于对比学习的图像-文本预训练方法,用于提高模型的泛化能力。
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
在开始安装之前,请确保您的计算机已安装以下软件:
- Python 3.8
- CUDA(NVIDIA GPU 驱动程序)
- conda(推荐使用,也可以使用 pip)
安装步骤
步骤 1:创建和激活虚拟环境
首先,创建一个新的 conda 虚拟环境并激活它:
conda create -n spanet python=3.8
conda activate spanet
步骤 2:安装依赖库
在虚拟环境中安装所需的依赖库:
conda install pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia
pip install ftfy regex tqdm
步骤 3:准备数据集
- 从 CUB-200-2011 下载数据集并解压。
- 使用数据集中的
bounding_boxes.txt文件裁剪图像。 - 根据
train_test_split.txt文件将裁剪后的图像分为训练集和测试集。 - 将裁剪后的训练图像放在
./datasets/cub200_cropped/train_cropped/目录下。 - 将裁剪后的测试图像放在
./datasets/cub200_cropped/test_cropped/目录下。 - 使用
img_aug.py脚本增强训练集,并放在./datasets/cub200_cropped/train_cropped_augmented/目录下。
步骤 4:准备模型权重
从项目的最新发布版本中下载模型权重,包括预训练的权重(来自 CLIP)和自定义模型权重。解压 pretrained_models.zip 到 pretrained_models/clip 目录,并解压 my_models.zip 到 my_models 目录。
步骤 5:运行项目
- 测试:运行
python test.py脚本进行模型测试。 - 训练:训练代码正在构建中,将很快发布。
以上步骤将帮助您成功安装和配置 SPANet 项目。在操作过程中,请确保遵循以上指示,并在必要时查阅项目文档以获取更多信息。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
685
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
343
146