LitServe项目中Prometheus监控集成的最佳实践
2025-06-26 02:08:58作者:侯霆垣
概述
在LitServe项目中实现有效的性能监控是确保服务稳定运行的关键环节。本文将详细介绍如何在LitServe框架中正确集成Prometheus监控系统,解决常见的多进程指标收集问题,并提供完整的实现方案。
多进程环境下的Prometheus集成挑战
LitServe作为高性能服务框架,默认采用多进程架构来处理请求。这种架构给Prometheus监控带来了特殊挑战:
- 指标收集问题:传统单进程Prometheus客户端无法跨进程收集指标
- 序列化警告:直接使用Prometheus客户端会收到不可序列化警告
- 中间件兼容性:需要确保HTTP监控中间件与多进程架构协同工作
完整解决方案实现
1. 配置多进程指标收集
首先需要设置Prometheus的多进程模式环境变量,并创建专用的指标存储目录:
import os
from prometheus_client import CollectorRegistry, multiprocess
# 设置多进程指标存储目录
os.environ["PROMETHEUS_MULTIPROC_DIR"] = "/tmp/prometheus_multiproc_dir"
# 确保目录存在
if not os.path.exists("/tmp/prometheus_multiproc_dir"):
os.makedirs("/tmp/prometheus_multiproc_dir")
# 创建多进程注册表
registry = CollectorRegistry()
multiprocess.MultiProcessCollector(registry)
2. 实现Prometheus日志记录器
创建自定义的PrometheusLogger类,继承自LitServe的Logger基类:
from prometheus_client import Histogram
import litserve as ls
class PrometheusLogger(ls.Logger):
def __init__(self):
super().__init__()
# 使用多进程注册表创建直方图指标
self.function_duration = Histogram(
"request_processing_seconds",
"Time spent processing request",
["function_name"],
registry=registry
)
def process(self, key, value):
# 记录方法执行时间
self.function_duration.labels(function_name=key).observe(value)
3. 实现HTTP监控中间件
对于HTTP请求的监控,需要同样使用多进程注册表:
from fastapi import Request
from starlette.middleware.base import BaseHTTPMiddleware
HTTP_REQUEST_LATENCY = Histogram(
"http_server_requests_duration_seconds_total",
"HTTP request latency in seconds",
["endpoint", "status_code", "method"],
registry=registry
)
class HTTPLatencyMiddleware(BaseHTTPMiddleware):
async def dispatch(self, request: Request, call_next):
method = request.method
endpoint = os.path.normpath(request.url.path)
status_code = 200
start_time = time.perf_counter()
try:
response = await call_next(request)
status_code = response.status_code
return response
finally:
duration = time.perf_counter() - start_time
HTTP_REQUEST_LATENCY.labels(
method=method,
endpoint=endpoint,
status_code=status_code
).observe(duration)
4. 服务启动配置
在启动LitServe服务时,需要正确配置日志记录器和中间件:
if __name__ == "__main__":
prometheus_logger = PrometheusLogger()
# 注意禁用压缩以避免指标数据被二次压缩
prometheus_app = make_asgi_app(registry=registry, disable_compression=True)
prometheus_logger.mount(path="/metrics", app=prometheus_app)
server = ls.LitServer(
YourLitAPI(),
loggers=prometheus_logger,
middlewares=[HTTPLatencyMiddleware]
)
server.run(port=8000)
关键注意事项
-
压缩问题:由于LitServe默认启用GZip中间件,必须为Prometheus ASGI应用设置
disable_compression=True,避免指标数据被二次压缩导致监控系统无法解析。 -
序列化警告:可以安全忽略"Logger PrometheusLogger is not picklable"警告,LitServe会自动处理不可序列化对象的重建。
-
指标目录权限:确保Prometheus多进程目录对所有工作进程可写。
-
指标清理:服务重启前应清理旧的指标文件,避免残留数据影响监控准确性。
监控指标解读
成功集成后,可以在/metrics端点看到两类关键指标:
-
HTTP请求指标:
- 请求延迟分布(直方图)
- 按端点、状态码和方法分类的统计
-
业务方法指标:
- 自定义方法的执行时间
- 可按方法名称标签过滤
总结
通过正确配置多进程注册表和注意压缩设置,可以在LitServe中实现完整的Prometheus监控方案。这种集成不仅提供了服务级别的性能监控,还能跟踪具体业务方法的执行效率,为性能优化提供数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319