Locust性能测试中boto3/SQS请求阻塞问题分析与解决方案
问题背景
在使用Locust 2.24版本进行性能测试时,测试人员遇到了一个棘手的问题:测试过程中随机出现请求停止发送的情况。虽然Locust进程仍在运行,统计数据仍在打印,但实际请求已经停止发送。这个问题在升级到最新版本前(使用2.14.2版本时)并未出现。
问题现象
测试过程中,Locust会在执行数百到数千个请求后突然停止发送新请求,具体表现为:
- 控制台仍在打印统计数据
- 统计数据内容不再更新
- 进程持续运行直到超时终止
- 问题出现时机无固定规律
问题定位
通过深入排查,发现问题与boto3对AWS SQS服务的调用有关,特别是以下两个操作:
get_queue_by_name方法调用receive_messages方法调用
调试日志显示,当问题发生时,SQS请求被发出但没有收到响应,导致Locust用户被阻塞在等待响应状态。当所有用户都被阻塞时,整个测试就会停滞。
根本原因分析
经过技术分析,发现问题的根源在于:
-
SQS资源管理不当:测试代码中创建了一个共享的SQS资源实例,所有用户都使用同一个实例进行队列操作。这种共享方式在高并发下可能导致资源竞争和阻塞。
-
生命周期理解偏差:测试人员误以为每个用户在每个任务迭代中都需要重新获取队列,实际上Locust的用户对象在任务执行间是保持存活的。
-
版本兼容性问题:Locust 2.24版本对gevent的集成方式可能有所调整,使得boto3的某些操作更容易出现阻塞。
解决方案
1. 优化SQS资源管理
建议为每个用户创建独立的SQS资源实例,避免共享导致的阻塞问题。可以通过以下方式实现:
class SQSUser(User):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.sqs = boto3.resource('sqs')
self.queue = None
2. 合理利用用户生命周期
利用Locust的用户生命周期特性,在用户初始化时获取队列,避免重复获取:
class SQSUser(User):
def on_start(self):
self.sqs = boto3.resource('sqs')
self.queue = self.sqs.get_queue_by_name(QueueName='my-queue')
3. 配置合理的超时参数
为SQS操作设置适当的超时参数,特别是receive_messages操作:
messages = queue.receive_messages(
MaxNumberOfMessages=10,
WaitTimeSeconds=5 # 设置合理的等待超时
)
4. 正确的导入顺序
确保Locust在boto3之前导入,以保证正确的monkey patch:
import locust # 必须在boto3之前导入
import boto3
最佳实践建议
-
避免全局共享资源:在性能测试中,尽量避免创建全局共享的资源实例,特别是网络连接类资源。
-
理解框架生命周期:深入理解Locust的用户和任务执行生命周期,合理利用on_start等方法进行初始化。
-
版本升级验证:升级Locust版本时,应进行全面测试,特别是涉及外部服务调用的场景。
-
完善的日志监控:配置详细的日志输出,便于快速定位问题。
-
资源清理机制:实现完善的资源清理机制,确保测试结束后所有资源都能正确释放。
总结
通过优化SQS资源管理方式、正确理解Locust用户生命周期以及合理配置超时参数,可以有效解决Locust与boto3/SQS集成时出现的请求阻塞问题。这一案例也提醒我们,在进行性能测试时,对外部服务的调用方式需要特别关注,合理的资源管理和配置是保证测试稳定运行的关键。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00