Postgres_exporter监控PostgreSQL 17时的checkpoints_timed字段问题解析
背景介绍
PostgreSQL 17 beta3版本中引入了一项重要的架构变更——将检查点相关的统计信息从传统的pg_stat_bgwriter视图迁移到了新增的pg_stat_checkpointer视图中。这一变更导致使用postgres_exporter进行监控时出现了"column checkpoints_timed does not exist"的错误。
问题现象
当用户将PostgreSQL从16版本升级到17 beta3版本后,运行postgres_exporter v0.15.0时会在日志中看到如下错误信息:
caller=collector.go:202 level=error msg="collector failed" name=stat_bgwriter duration_seconds=0.018634044 err="pq: column \"checkpoints_timed\" does not exist"
通过分析PostgreSQL的查询日志可以发现,postgres_exporter仍在尝试从pg_stat_bgwriter视图中查询checkpoints_timed等检查点相关字段,而这些字段在PostgreSQL 17中已被移除。
技术原因
PostgreSQL 17对后台写入器(background writer)和检查点(checkpointer)的统计信息进行了分离:
- 原有的pg_stat_bgwriter视图现在只包含与后台写入器直接相关的统计信息
- 新增了pg_stat_checkpointer视图专门存放检查点相关的统计信息
- 被移动的字段包括:checkpoints_timed、checkpoints_req、checkpoint_write_time、checkpoint_sync_time和buffers_checkpoint
这种架构变更使得监控系统能够更清晰地分别跟踪后台写入器和检查点进程的活动情况。
临时解决方案
在等待postgres_exporter官方支持PostgreSQL 17之前,用户可以采用以下临时解决方案:
-
禁用stat_bgwriter收集器
通过添加--no-collector.stat_bgwriter启动参数来禁用有问题的收集器。在Docker环境中可以通过修改启动命令实现:command: '--no-collector.stat_bgwriter' -
使用Helm Chart配置
如果通过Helm部署,可以设置以下值:prometheus-postgres-exporter: config: disableCollectorBgwriter: true -
使用SQL Exporter替代
对于需要完整监控指标的用户,可以考虑使用SQL Exporter并自定义查询语句来获取所需的统计信息。
长期解决方案
社区已经提出了修复方案,主要思路是:
- 检测PostgreSQL版本
- 对于17及以上版本,从pg_stat_checkpointer视图获取检查点相关指标
- 保持对旧版本的支持
这一变更需要同时考虑向前兼容性和新功能的支持,因此需要谨慎处理。
最佳实践建议
对于计划升级到PostgreSQL 17的用户,建议:
- 在测试环境中提前验证监控系统的兼容性
- 关注postgres_exporter的更新,及时升级到支持PostgreSQL 17的版本
- 考虑将关键监控指标迁移到自定义查询,减少对默认收集器的依赖
- 定期检查监控系统的日志,确保所有指标都能正常采集
通过理解这一问题的技术背景和解决方案,用户可以更好地规划从PostgreSQL 16到17的升级路径,确保监控系统的连续性和稳定性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00