MELD:多模态多人对话情感识别数据集教程
1、项目介绍
MELD(Multimodal Multi-Party Dataset for Emotion Recognition in Conversation)是一个为对话中情感识别设计的多模态数据集。它基于《老友记》电视剧中的对话,包含了文本、音频和视觉三个模态的数据,总共超过1400段对话和13000个发言片段。每个发言被标注了七种基本情感之一:愤怒、厌恶、悲伤、喜悦、中立、惊讶和恐惧,以及情感倾向(正面、负面、中性)。MELD旨在解决多参与者对话的情感识别挑战,适合用于开发高级的对话系统和研究情绪流在序列转承中的变化。
2、项目快速启动
要快速启动并使用MELD数据集,首先需要从GitHub仓库克隆项目:
git clone https://github.com/declare-lab/MELD.git
接着,下载数据集。你可以通过wget命令获取原始数据:
wget http://web.eecs.umich.edu/~mihalcea/downloads/MELD-Raw.tar.gz
之后,解压数据包到合适的位置,并参照仓库内的README.md文件进行数据预处理和了解如何加载数据至你的项目中。
如果你正在使用Python环境,可能还需要安装必要的依赖库来处理数据和模型训练,比如NumPy, Pandas, TensorFlow或PyTorch等,具体依赖项根据你的实现方式而定。
3、应用案例和最佳实践
应用案例
- 情感分析: 使用MELD数据训练模型,可以构建一个多模态情感分析器,以更准确地理解对话中的复杂情感。
- 对话系统: 在聊天机器人中集成情感识别功能,使得机器人能够基于用户的情绪做出更贴切的响应。
最佳实践
- 融合不同模态: 利用所有可用的模态信息(文本、音频、视觉),可以提升模型对情感识别的准确性。
- 上下文建模: 由于MELD数据集强调对话的连贯性,确保模型能够捕捉到对话中的情感流是关键。
- 使用预训练模型: 考虑结合如BERT这类的预训练语言模型,增强文本处理能力。
4、典型生态项目
MELD数据集已经促进了多个研究项目的发展,特别是在多模态情感分析领域。一些典型的后续研究包括开发更先进的对话理解系统、利用MELD进行跨模态学习的尝试,以及探讨如何在智能助手和其他交互式平台上应用这些技术。开发者们可以通过比较基线模型的表现,进一步优化自己的算法。例如,“COSMIC”框架就是建立在此基础上,探索了如何运用常识知识来提高情感识别的精度。
对于希望进一步深入了解MELD数据集及其应用的研究者和开发者来说,查阅相关的学术论文和开源项目成为必要步骤,以充分利用该数据集带来的洞察力和机会。
以上便是围绕MELD数据集的简要教程和概述,希望对你有所帮助!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00