Azure CLI机器学习扩展安装失败问题分析与解决方案
问题背景
在使用Azure CLI工具时,用户尝试安装机器学习扩展(ml)时遇到了校验和(checksum)验证失败的问题。该问题表现为在执行az extension add -n ml命令时,系统提示"checksum of the extension does not match the expected value"错误。
问题现象
当用户执行安装命令后,系统会从Azure的扩展仓库下载ml扩展的最新版本(2.36.1),但在安装过程中会进行校验和验证。从调试日志可以看到,系统预期的SHA256校验和是"3e335b97b07e859ae13ee6cc2b727d4ac14ab16d9790e15f59d743c0924c84b0",但实际计算得到的校验和却是"067e5dad4052820669427d7903aef1dd2aba3f6a26433b87f2b2aec86d8e3512",两者不匹配导致安装失败。
问题原因
经过分析,这个问题主要出现在ml扩展的2.36.1版本上。校验和不匹配通常意味着:
- 扩展包在传输过程中可能被损坏
- 扩展包在上传到仓库时生成的校验和与实际的包内容不匹配
- 扩展包在构建过程中出现了不一致
解决方案
目前有两种可行的解决方案:
方案一:安装旧版本扩展
通过指定版本号安装2.36.0版本,可以绕过这个问题:
az extension add -n ml --version 2.36.0
这个版本经过验证可以正常安装使用,且功能上基本与2.36.1版本一致。
方案二:升级Azure CLI工具
确保使用最新版本的Azure CLI工具(2.71.0或更高版本),有时可以解决扩展安装的兼容性问题。
技术细节
校验和验证是Azure CLI扩展安装过程中的重要安全机制,它通过SHA256算法确保下载的扩展包与官方发布的完全一致,防止中间人攻击或包被篡改。当校验和不匹配时,系统会主动拒绝安装以保护用户环境安全。
对于开发者而言,这种机制虽然增加了安全性,但也要求扩展发布流程必须严格保证包内容与校验和的一致性。从技术角度看,这个问题可能是由于:
- 构建环境不一致导致生成的包内容变化
- 上传过程中网络问题导致包损坏
- 校验和计算或记录环节出现错误
结论
遇到Azure CLI扩展安装失败时,特别是校验和错误,建议用户:
- 首先尝试安装稍旧的稳定版本
- 确保CLI工具本身是最新版本
- 关注官方更新,等待问题修复
对于ml扩展2.36.1版本的问题,开发团队已经注意到并正在处理中。在此期间,使用2.36.0版本是一个安全可靠的临时解决方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00