Azure CLI机器学习扩展安装失败问题分析与解决方案
问题背景
在使用Azure CLI工具时,用户尝试安装机器学习扩展(ml)时遇到了校验和(checksum)验证失败的问题。该问题表现为在执行az extension add -n ml
命令时,系统提示"checksum of the extension does not match the expected value"错误。
问题现象
当用户执行安装命令后,系统会从Azure的扩展仓库下载ml扩展的最新版本(2.36.1),但在安装过程中会进行校验和验证。从调试日志可以看到,系统预期的SHA256校验和是"3e335b97b07e859ae13ee6cc2b727d4ac14ab16d9790e15f59d743c0924c84b0",但实际计算得到的校验和却是"067e5dad4052820669427d7903aef1dd2aba3f6a26433b87f2b2aec86d8e3512",两者不匹配导致安装失败。
问题原因
经过分析,这个问题主要出现在ml扩展的2.36.1版本上。校验和不匹配通常意味着:
- 扩展包在传输过程中可能被损坏
- 扩展包在上传到仓库时生成的校验和与实际的包内容不匹配
- 扩展包在构建过程中出现了不一致
解决方案
目前有两种可行的解决方案:
方案一:安装旧版本扩展
通过指定版本号安装2.36.0版本,可以绕过这个问题:
az extension add -n ml --version 2.36.0
这个版本经过验证可以正常安装使用,且功能上基本与2.36.1版本一致。
方案二:升级Azure CLI工具
确保使用最新版本的Azure CLI工具(2.71.0或更高版本),有时可以解决扩展安装的兼容性问题。
技术细节
校验和验证是Azure CLI扩展安装过程中的重要安全机制,它通过SHA256算法确保下载的扩展包与官方发布的完全一致,防止中间人攻击或包被篡改。当校验和不匹配时,系统会主动拒绝安装以保护用户环境安全。
对于开发者而言,这种机制虽然增加了安全性,但也要求扩展发布流程必须严格保证包内容与校验和的一致性。从技术角度看,这个问题可能是由于:
- 构建环境不一致导致生成的包内容变化
- 上传过程中网络问题导致包损坏
- 校验和计算或记录环节出现错误
结论
遇到Azure CLI扩展安装失败时,特别是校验和错误,建议用户:
- 首先尝试安装稍旧的稳定版本
- 确保CLI工具本身是最新版本
- 关注官方更新,等待问题修复
对于ml扩展2.36.1版本的问题,开发团队已经注意到并正在处理中。在此期间,使用2.36.0版本是一个安全可靠的临时解决方案。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









