在Gen.jl中使用粒子滤波后验分布作为选择映射的技术方案
2025-07-08 23:36:40作者:齐冠琰
背景概述
在概率编程框架Gen.jl中,粒子滤波是一种常用的近似推理方法。当我们需要将一个模型的后验分布作为另一个模型的选择映射(choice map)时,会遇到一些技术挑战。特别是在使用粒子滤波产生多个粒子(如50个)的情况下,如何有效地处理同一状态下多个观测值的问题。
核心问题分析
假设我们有两个相关模型:
- 模型1:包含随机变量y和z,其中z是观测变量
- 模型2:包含随机变量x、y和z,其中z是观测变量
模型1的后验分布p₁(y|z)通过粒子滤波近似为一组加权粒子[(yᵢ, wᵢ)]。我们需要将这些粒子作为模型2中y的提议分布。
技术实现方案
1. 粒子滤波作为提议分布
我们可以将粒子滤波的结果视为一个近似分布q(y|z),它逼近p₁(y|z)。具体实现步骤如下:
- 使用Gen.sample_unweighted_traces按权重从粒子集合中采样y值
- 通过Gen.log_ml_estimate获取对数边际似然估计Ẑ
- 使用Gen.get_score评估特定轨迹的p₁(y,z)
2. 重要性采样实现
结合模型2的提议分布q(x),我们可以构建重要性采样方案:
- 从q(x)提议x值
- 通过粒子滤波给定观测z,从q(y|z)提议y值
- 计算重要性权重:w = p₂(x,y,z)/(q(x)q̂(y|z))
其中q̂(y|z) = E[p₁(y,z)/Ẑ]是q(y|z)的无偏估计。
数学基础
该方案的数学基础在于:
- 近似分布的性质:q(y|z) = E[p₁(y,z)/Ẑ]
- 其倒数的无偏估计:1/q(y|z) = E[Ẑ/p₁(y,z)]
- 重要性权重的正确性保证
实现建议
在实际实现时,建议参考Gen.jl中importance_sampling的源代码,主要修改以下部分:
- 采样方式改为从粒子滤波中采样
- 重新计算proposal_weight和log_weight
- 确保权重计算中包含粒子滤波的边际似然估计
扩展思考
对于更复杂的场景,可以考虑使用GenSP.jl这一Gen.jl的变种,它提供了更便捷的实现方式。此外,当模型间的变量关系更复杂时,可能需要调整提议分布的结构。
总结
通过将粒子滤波结果作为提议分布,我们可以在Gen.jl中实现模型间的信息传递。这种方法虽然不是严格的随机条件化,但在实践中能提供良好的近似效果。关键在于正确处理粒子滤波的权重和边际似然估计,确保重要性采样的有效性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
229
259
暂无简介
Dart
680
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
493