在Gen.jl中使用粒子滤波后验分布作为选择映射的技术方案
2025-07-08 23:36:40作者:齐冠琰
背景概述
在概率编程框架Gen.jl中,粒子滤波是一种常用的近似推理方法。当我们需要将一个模型的后验分布作为另一个模型的选择映射(choice map)时,会遇到一些技术挑战。特别是在使用粒子滤波产生多个粒子(如50个)的情况下,如何有效地处理同一状态下多个观测值的问题。
核心问题分析
假设我们有两个相关模型:
- 模型1:包含随机变量y和z,其中z是观测变量
- 模型2:包含随机变量x、y和z,其中z是观测变量
模型1的后验分布p₁(y|z)通过粒子滤波近似为一组加权粒子[(yᵢ, wᵢ)]。我们需要将这些粒子作为模型2中y的提议分布。
技术实现方案
1. 粒子滤波作为提议分布
我们可以将粒子滤波的结果视为一个近似分布q(y|z),它逼近p₁(y|z)。具体实现步骤如下:
- 使用Gen.sample_unweighted_traces按权重从粒子集合中采样y值
- 通过Gen.log_ml_estimate获取对数边际似然估计Ẑ
- 使用Gen.get_score评估特定轨迹的p₁(y,z)
2. 重要性采样实现
结合模型2的提议分布q(x),我们可以构建重要性采样方案:
- 从q(x)提议x值
- 通过粒子滤波给定观测z,从q(y|z)提议y值
- 计算重要性权重:w = p₂(x,y,z)/(q(x)q̂(y|z))
其中q̂(y|z) = E[p₁(y,z)/Ẑ]是q(y|z)的无偏估计。
数学基础
该方案的数学基础在于:
- 近似分布的性质:q(y|z) = E[p₁(y,z)/Ẑ]
- 其倒数的无偏估计:1/q(y|z) = E[Ẑ/p₁(y,z)]
- 重要性权重的正确性保证
实现建议
在实际实现时,建议参考Gen.jl中importance_sampling的源代码,主要修改以下部分:
- 采样方式改为从粒子滤波中采样
- 重新计算proposal_weight和log_weight
- 确保权重计算中包含粒子滤波的边际似然估计
扩展思考
对于更复杂的场景,可以考虑使用GenSP.jl这一Gen.jl的变种,它提供了更便捷的实现方式。此外,当模型间的变量关系更复杂时,可能需要调整提议分布的结构。
总结
通过将粒子滤波结果作为提议分布,我们可以在Gen.jl中实现模型间的信息传递。这种方法虽然不是严格的随机条件化,但在实践中能提供良好的近似效果。关键在于正确处理粒子滤波的权重和边际似然估计,确保重要性采样的有效性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120