Apache ShenYu Helm Chart 使用教程
2024-09-02 20:18:26作者:明树来
1. 项目的目录结构及介绍
Apache ShenYu Helm Chart 的目录结构如下:
shenyu-helm-chart/
├── charts/
├── templates/
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ ├── service.yaml
│ ├── ingress.yaml
│ └── ...
├── values.yaml
└── Chart.yaml
目录结构介绍
- charts/: 存放依赖的子 chart。
- templates/: 存放 Kubernetes 资源模板文件,如 Deployment、Service、Ingress 等。
- _helpers.tpl: 定义模板助手函数。
- deployment.yaml: 定义 ShenYu 的 Deployment 配置。
- service.yaml: 定义 ShenYu 的 Service 配置。
- ingress.yaml: 定义 ShenYu 的 Ingress 配置。
- values.yaml: 定义默认的配置值。
- Chart.yaml: 定义 chart 的元数据,如名称、版本等。
2. 项目的启动文件介绍
在 templates/ 目录下,主要的启动文件是 deployment.yaml。这个文件定义了如何部署 ShenYu 应用到 Kubernetes 集群中。
deployment.yaml 关键部分
apiVersion: apps/v1
kind: Deployment
metadata:
name: {{ include "shenyu.fullname" . }}
labels:
{{- include "shenyu.labels" . | nindent 4 }}
spec:
replicas: {{ .Values.replicaCount }}
selector:
matchLabels:
{{- include "shenyu.selectorLabels" . | nindent 6 }}
template:
metadata:
labels:
{{- include "shenyu.selectorLabels" . | nindent 8 }}
spec:
containers:
- name: {{ .Chart.Name }}
image: "{{ .Values.image.repository }}:{{ .Values.image.tag }}"
imagePullPolicy: {{ .Values.image.pullPolicy }}
ports:
- containerPort: {{ .Values.service.port }}
env:
{{- toYaml .Values.env | nindent 12 }}
resources:
{{- toYaml .Values.resources | nindent 12 }}
启动文件介绍
- apiVersion: 指定 Kubernetes API 版本。
- kind: 指定资源类型为 Deployment。
- metadata: 定义 Deployment 的名称和标签。
- spec: 定义 Deployment 的具体配置,包括副本数、选择器、模板等。
- template: 定义 Pod 模板,包括容器镜像、端口、环境变量和资源限制。
3. 项目的配置文件介绍
主要的配置文件是 values.yaml,它定义了 chart 的默认配置值。
values.yaml 关键部分
replicaCount: 1
image:
repository: apache/shenyu-admin
tag: latest
pullPolicy: IfNotPresent
service:
type: ClusterIP
port: 8080
resources:
requests:
memory: 512Mi
cpu: 500m
limits:
memory: 1Gi
cpu: 1
env:
- name: SPRING_DATASOURCE_URL
value: "jdbc:mysql://mysql:3306/shenyu?useUnicode=true&characterEncoding=utf-8"
- name: SPRING_DATASOURCE_USERNAME
value: "root"
- name: SPRING_DATASOURCE_PASSWORD
value: "123456"
配置文件介绍
- replicaCount: 定义副本数量。
- image: 定义镜像仓库、标签和拉取策略。
- service: 定义服务类型和端口。
- resources: 定义资源请求和限制。
- env: 定义环境变量,如数据库连接信息。
通过修改 values.yaml 文件,可以自定义 ShenYu 的部署配置,如镜像版本、服务类型、资源限制等。
以上是 Apache ShenYu Helm Chart 的基本使用教程,
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443