首页
/ AFL++中select语句覆盖率检测的挑战与解决方案

AFL++中select语句覆盖率检测的挑战与解决方案

2025-06-06 21:18:54作者:翟萌耘Ralph

背景介绍

在模糊测试领域,AFL++作为一款先进的模糊测试工具,其覆盖率引导机制对于发现程序中的新路径至关重要。然而,在处理LLVM IR中的select语句时,传统的覆盖率检测方法存在一定局限性。

问题分析

当程序中的条件判断被LLVM优化为select语句时,会出现以下典型模式:

%66 = icmp ult i16 %65, 49
%67 = icmp slt i32 %61, -100000000
%68 = select i1 %66, i1 %67, i1 false

传统覆盖率检测方法仅关注select语句本身的条件(%66),而忽略了内部比较(%67)的结果。这导致当%66为真时,无论%67为真或假,都被视为相同的覆盖率情况,但实际上它们代表了不同的程序执行路径。

技术挑战

  1. 复杂条件组合:实际代码中常出现多个icmp通过and/or组合后再用于select的情况,增加了回溯分析的难度。

  2. 基本块边界:条件判断可能跨越多个基本块,需要考虑控制流的影响。

  3. 性能考量:过度插桩会增加运行时开销,需要在精确度和性能间取得平衡。

解决方案演进

AFL++开发团队经过多次迭代,最终确定了以下改进方案:

  1. 全面插桩策略:对所有的icmp和select语句进行插桩,除非其结果用于基本块终结符。

  2. 布尔结果过滤:特别关注产生布尔结果的select语句,确保条件分支的全面覆盖。

  3. 隐藏分支处理:在专门的分支中实现了这一机制,首先针对默认的pcguard实现进行验证。

实现细节

改进后的实现能够正确处理以下复杂情况:

%24 = icmp eq i32 %23, -100000004
%25 = icmp ne i32 %17, -100000003
%26 = and i1 %25, %24
%27 = select i1 %22, i1 %26, i1 false

对于这样的代码,系统会为每个icmp和select都创建独立的覆盖率跟踪点,共6个边沿检测点,确保全面覆盖所有可能的条件组合。

实际影响

这一改进显著提高了AFL++在以下场景的测试效果:

  1. 复杂条件判断的代码路径探索
  2. 经过LLVM优化的程序分支覆盖
  3. 边界条件测试的精确度

结论

AFL++通过改进select语句的覆盖率检测机制,解决了传统方法在处理复杂条件判断时的局限性。这一改进已被合并到稳定分支,为模糊测试的路径探索能力带来了实质性提升。对于开发者而言,理解这一机制有助于编写更易于模糊测试发现的代码结构,特别是避免过于复杂的条件组合影响测试效果。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
981
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
932
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0