AFL++中select语句覆盖率检测的挑战与解决方案
背景介绍
在模糊测试领域,AFL++作为一款先进的模糊测试工具,其覆盖率引导机制对于发现程序中的新路径至关重要。然而,在处理LLVM IR中的select语句时,传统的覆盖率检测方法存在一定局限性。
问题分析
当程序中的条件判断被LLVM优化为select语句时,会出现以下典型模式:
%66 = icmp ult i16 %65, 49
%67 = icmp slt i32 %61, -100000000
%68 = select i1 %66, i1 %67, i1 false
传统覆盖率检测方法仅关注select语句本身的条件(%66),而忽略了内部比较(%67)的结果。这导致当%66为真时,无论%67为真或假,都被视为相同的覆盖率情况,但实际上它们代表了不同的程序执行路径。
技术挑战
-
复杂条件组合:实际代码中常出现多个icmp通过and/or组合后再用于select的情况,增加了回溯分析的难度。
-
基本块边界:条件判断可能跨越多个基本块,需要考虑控制流的影响。
-
性能考量:过度插桩会增加运行时开销,需要在精确度和性能间取得平衡。
解决方案演进
AFL++开发团队经过多次迭代,最终确定了以下改进方案:
-
全面插桩策略:对所有的icmp和select语句进行插桩,除非其结果用于基本块终结符。
-
布尔结果过滤:特别关注产生布尔结果的select语句,确保条件分支的全面覆盖。
-
隐藏分支处理:在专门的分支中实现了这一机制,首先针对默认的pcguard实现进行验证。
实现细节
改进后的实现能够正确处理以下复杂情况:
%24 = icmp eq i32 %23, -100000004
%25 = icmp ne i32 %17, -100000003
%26 = and i1 %25, %24
%27 = select i1 %22, i1 %26, i1 false
对于这样的代码,系统会为每个icmp和select都创建独立的覆盖率跟踪点,共6个边沿检测点,确保全面覆盖所有可能的条件组合。
实际影响
这一改进显著提高了AFL++在以下场景的测试效果:
- 复杂条件判断的代码路径探索
- 经过LLVM优化的程序分支覆盖
- 边界条件测试的精确度
结论
AFL++通过改进select语句的覆盖率检测机制,解决了传统方法在处理复杂条件判断时的局限性。这一改进已被合并到稳定分支,为模糊测试的路径探索能力带来了实质性提升。对于开发者而言,理解这一机制有助于编写更易于模糊测试发现的代码结构,特别是避免过于复杂的条件组合影响测试效果。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00