GenAI Bench 项目全面使用指南:从安装到性能分析
2025-06-28 19:17:11作者:仰钰奇
项目概述
GenAI Bench 是一个专为生成式 AI 系统设计的性能基准测试工具,它能够对各类 AI 服务(包括文本生成、图像理解、嵌入向量计算等)进行全面的性能评估。本文将详细介绍该工具的使用方法,帮助开发者快速上手并充分利用其功能。
安装指南
推荐安装方式(PyPI)
对于大多数用户,我们推荐通过 PyPI 进行安装:
pip install genai-bench
安装完成后,可以通过以下命令验证安装是否成功:
genai-bench --help
开发环境搭建
如需使用最新功能或进行二次开发,建议采用开发模式安装:
- 确保已安装 Python 3.11
- 使用 uv 创建虚拟环境:
make uv source .venv/bin/activate - 以可编辑模式安装项目:
make install
核心功能解析
任务类型定义
GenAI Bench 通过任务类型(Task)来区分不同的基准测试场景,其命名遵循"输入模态-to-输出模态"的格式:
| 任务类型 | 描述 | 旧版本对应值 |
|---|---|---|
| text-to-text | 文本到文本生成(如聊天、问答) | chat |
| text-to-embeddings | 文本到嵌入向量生成 | embeddings |
| image-to-text | 图像到文本生成(如视觉问答) | vision |
| image-to-embeddings | 图像到嵌入向量生成 | - |
基准测试执行
文本生成测试示例
export HF_TOKEN="<your-key>"
export TRANSFORMERS_VERBOSITY=error
genai-bench benchmark --api-backend openai \
--api-base "http://localhost:8082" \
--api-key "your-key" \
--api-model-name "vllm-model" \
--model-tokenizer "/path/to/model" \
--task text-to-text \
--max-time-per-run 15 \
--max-requests-per-run 300 \
--server-engine "vLLM" \
--server-gpu-type "H100" \
--server-version "v0.6.0" \
--server-gpu-count 4
关键参数说明:
--max-time-per-run:单次测试最大持续时间--max-requests-per-run:单次测试最大请求数--num-concurrency:并发请求数(可多值设置)
视觉任务测试
视觉任务需要指定图像数据集:
genai-bench benchmark \
--api-backend openai \
--api-key "your-key" \
--api-base "http://localhost:8180" \
--api-model-name "/models/vision-model" \
--model-tokenizer "/models/vision-model" \
--task image-to-text \
--dataset-config ./config_llava-bench.json
分布式测试
当单进程无法产生足够负载时,可启用多工作进程:
--num-workers 4
--master-port 5577
注意:工作进程数不宜超过16,以避免资源争用。
数据集配置策略
GenAI Bench 支持灵活的数据集配置方式:
简单模式(命令行直接指定)
--dataset-path /path/to/data.csv \
--dataset-prompt-column "prompt"
高级模式(JSON配置文件)
{
"source": {
"type": "huggingface",
"path": "ccdv/govreport-summarization",
"huggingface_kwargs": {
"split": "train",
"streaming": true
}
},
"prompt_column": "report"
}
视觉任务数据集配置示例:
{
"source": {
"type": "huggingface",
"path": "lmms-lab/llava-bench-in-the-wild",
"huggingface_kwargs": {
"split": "train"
}
},
"prompt_column": "question",
"image_column": "image"
}
结果分析与可视化
生成Excel报告
genai-bench excel --experiment-folder <path> --excel-name report.xlsx
生成性能分析图表
GenAI Bench 可生成包含8个子图的综合性能分析图表:
genai-bench plot --experiments-folder <path> --group-key traffic_scenario
图表内容包括:
- 推理速度 vs 服务器输出吞吐量
- 首令牌时间 vs 服务器输出吞吐量
- 平均端到端延迟 vs RPS
- 错误率分析
- 更多关键性能指标...
性能优化建议
-
负载配置:
- 轻负载场景:
--max-time-per-run 10 --max-requests-per-run 300 - 重负载场景:
--max-time-per-run 30 --max-requests-per-run 100
- 轻负载场景:
-
并发设置:
--num-concurrency 1 --num-concurrency 2 --num-concurrency 4 \ --num-concurrency 8 --num-concurrency 16 --num-concurrency 32 -
监控提示:
- 当CPU使用率超过90%时,考虑增加工作进程数
- 关注WARNING级别的日志信息
高级功能
OCI Cohere 服务测试
genai-bench benchmark --api-backend oci-cohere \
--config-file /path/to/oci/config \
--api-base "https://inference.endpoint" \
--api-model-name "model-name" \
--task text-to-text \
--additional-request-params '{"compartmentId": "ID", "endpointId": "ID"}'
结果上传至OCI对象存储
支持将测试结果直接上传至OCI对象存储,便于团队协作和历史数据分析。
通过本文的全面介绍,开发者应能充分利用GenAI Bench进行各类生成式AI服务的性能评估与优化。建议定期查看工具的帮助文档(--help)以获取最新功能信息。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218