GenAI Bench 项目全面使用指南:从安装到性能分析
2025-06-28 02:40:10作者:仰钰奇
项目概述
GenAI Bench 是一个专为生成式 AI 系统设计的性能基准测试工具,它能够对各类 AI 服务(包括文本生成、图像理解、嵌入向量计算等)进行全面的性能评估。本文将详细介绍该工具的使用方法,帮助开发者快速上手并充分利用其功能。
安装指南
推荐安装方式(PyPI)
对于大多数用户,我们推荐通过 PyPI 进行安装:
pip install genai-bench
安装完成后,可以通过以下命令验证安装是否成功:
genai-bench --help
开发环境搭建
如需使用最新功能或进行二次开发,建议采用开发模式安装:
- 确保已安装 Python 3.11
- 使用 uv 创建虚拟环境:
make uv source .venv/bin/activate - 以可编辑模式安装项目:
make install
核心功能解析
任务类型定义
GenAI Bench 通过任务类型(Task)来区分不同的基准测试场景,其命名遵循"输入模态-to-输出模态"的格式:
| 任务类型 | 描述 | 旧版本对应值 |
|---|---|---|
| text-to-text | 文本到文本生成(如聊天、问答) | chat |
| text-to-embeddings | 文本到嵌入向量生成 | embeddings |
| image-to-text | 图像到文本生成(如视觉问答) | vision |
| image-to-embeddings | 图像到嵌入向量生成 | - |
基准测试执行
文本生成测试示例
export HF_TOKEN="<your-key>"
export TRANSFORMERS_VERBOSITY=error
genai-bench benchmark --api-backend openai \
--api-base "http://localhost:8082" \
--api-key "your-key" \
--api-model-name "vllm-model" \
--model-tokenizer "/path/to/model" \
--task text-to-text \
--max-time-per-run 15 \
--max-requests-per-run 300 \
--server-engine "vLLM" \
--server-gpu-type "H100" \
--server-version "v0.6.0" \
--server-gpu-count 4
关键参数说明:
--max-time-per-run:单次测试最大持续时间--max-requests-per-run:单次测试最大请求数--num-concurrency:并发请求数(可多值设置)
视觉任务测试
视觉任务需要指定图像数据集:
genai-bench benchmark \
--api-backend openai \
--api-key "your-key" \
--api-base "http://localhost:8180" \
--api-model-name "/models/vision-model" \
--model-tokenizer "/models/vision-model" \
--task image-to-text \
--dataset-config ./config_llava-bench.json
分布式测试
当单进程无法产生足够负载时,可启用多工作进程:
--num-workers 4
--master-port 5577
注意:工作进程数不宜超过16,以避免资源争用。
数据集配置策略
GenAI Bench 支持灵活的数据集配置方式:
简单模式(命令行直接指定)
--dataset-path /path/to/data.csv \
--dataset-prompt-column "prompt"
高级模式(JSON配置文件)
{
"source": {
"type": "huggingface",
"path": "ccdv/govreport-summarization",
"huggingface_kwargs": {
"split": "train",
"streaming": true
}
},
"prompt_column": "report"
}
视觉任务数据集配置示例:
{
"source": {
"type": "huggingface",
"path": "lmms-lab/llava-bench-in-the-wild",
"huggingface_kwargs": {
"split": "train"
}
},
"prompt_column": "question",
"image_column": "image"
}
结果分析与可视化
生成Excel报告
genai-bench excel --experiment-folder <path> --excel-name report.xlsx
生成性能分析图表
GenAI Bench 可生成包含8个子图的综合性能分析图表:
genai-bench plot --experiments-folder <path> --group-key traffic_scenario
图表内容包括:
- 推理速度 vs 服务器输出吞吐量
- 首令牌时间 vs 服务器输出吞吐量
- 平均端到端延迟 vs RPS
- 错误率分析
- 更多关键性能指标...
性能优化建议
-
负载配置:
- 轻负载场景:
--max-time-per-run 10 --max-requests-per-run 300 - 重负载场景:
--max-time-per-run 30 --max-requests-per-run 100
- 轻负载场景:
-
并发设置:
--num-concurrency 1 --num-concurrency 2 --num-concurrency 4 \ --num-concurrency 8 --num-concurrency 16 --num-concurrency 32 -
监控提示:
- 当CPU使用率超过90%时,考虑增加工作进程数
- 关注WARNING级别的日志信息
高级功能
OCI Cohere 服务测试
genai-bench benchmark --api-backend oci-cohere \
--config-file /path/to/oci/config \
--api-base "https://inference.endpoint" \
--api-model-name "model-name" \
--task text-to-text \
--additional-request-params '{"compartmentId": "ID", "endpointId": "ID"}'
结果上传至OCI对象存储
支持将测试结果直接上传至OCI对象存储,便于团队协作和历史数据分析。
通过本文的全面介绍,开发者应能充分利用GenAI Bench进行各类生成式AI服务的性能评估与优化。建议定期查看工具的帮助文档(--help)以获取最新功能信息。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1