angr项目中的符号执行差异问题分析与解决方案
符号执行引擎angr在处理不同版本GCC编译的程序时可能会遇到兼容性问题,本文通过一个实际案例深入分析问题根源并提供解决方案。
问题背景
在逆向工程和安全分析领域,符号执行是一种强大的技术手段。angr作为一款优秀的符号执行框架,能够自动分析二进制程序的行为。然而,当同一个源代码在不同环境下编译后,angr的分析结果可能出现不一致的情况。
现象描述
用户报告了一个典型案例:同一段C语言代码分别在Ubuntu 20.04和24.04系统上使用GCC-9编译后,angr的分析结果出现差异。具体表现为:
- 在Ubuntu 20.04环境下能够正确找到预期输入
- 在Ubuntu 24.04环境下却返回空结果
根本原因分析
经过深入调查,发现问题源于以下几个方面:
-
Glibc版本差异:Ubuntu 24.04使用了较新的glibc 2.39版本,该版本支持C23标准
-
函数命名变化:在C23标准下,标准输入函数scanf被编译为__isoc23_scanf,而不再是传统的__isoc99_scanf
-
angr的hook机制:angr通过hook机制拦截和模拟库函数行为,但当前版本仅定义了__isoc99_scanf的hook,缺少对新版本__isoc23_scanf的支持
解决方案
针对这一问题,可以通过以下两种方式解决:
方法一:环境兼容方案
复制Ubuntu 20.04的libc和ld.so到目标程序目录,强制使用旧版本的库函数。这种方法简单直接,但可能不适合所有场景。
方法二:代码级修复
在angr源代码中添加对新版本scanf函数的hook支持。具体修改如下:
在angr/procedures/glibc/scanf.py文件中增加以下类定义:
class __isoc23_scanf(scanf):
pass
这一修改使得angr能够正确识别和处理C23标准编译的scanf函数调用。
技术启示
-
符号执行的局限性:符号执行引擎对系统库函数的支持程度直接影响分析结果的准确性
-
标准演进的影响:编程语言标准的更新可能导致底层实现的变化,安全工具需要及时跟进
-
兼容性考虑:在二进制分析领域,环境差异可能导致分析结果不一致,需要建立完善的测试体系
最佳实践建议
-
在使用符号执行工具时,应当记录完整的编译环境和工具链版本
-
对于关键分析任务,建议固定开发和分析环境
-
关注工具更新日志,及时了解对新标准的支持情况
-
在遇到分析异常时,可以从库函数hook和ABI兼容性角度进行排查
通过这个案例,我们不仅解决了具体的技术问题,更深入理解了符号执行工具在实际应用中的挑战和解决方案。这对于安全研究人员和逆向工程师都具有重要的参考价值。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00