Narwhals v1.35.0 版本发布:性能优化与API改进
Narwhals 是一个为数据科学和数据分析领域设计的Python库,它提供了高效的数据处理能力,特别适合处理大规模数据集。该项目通过提供简洁的API和优化的执行引擎,帮助开发者更高效地进行数据操作和分析。
重大变更
本次发布的v1.35.0版本包含了一些重要的API变更,开发者需要特别注意:
-
Series.hist方法调整:该版本对Series.hist方法进行了调整,使其行为与Polars保持一致。这一变更可能会影响现有的直方图生成代码。
-
concat方法限制:现在明确禁止在LazyFrame上使用
concat(..., how="horizontal")的水平连接操作。这一变更是为了确保API的一致性和稳定性。
性能优化
v1.35.0版本在性能方面做了显著改进:
- 类型推断优化:在
__getitem__和filter操作中,现在只使用序列的第一个元素来推断类型,这大大减少了类型推断的开销,特别是在处理大型数据集时。
功能增强
本版本引入了多项功能增强:
-
滚动函数稳定性:移除了rolling_*和ewm_mean函数的"unstable"标记,表明这些函数现在已经足够稳定,可以在生产环境中使用。
-
DuckDB表达式增强:为DuckDBExpr.rank方法新增了对'ordinal'、'max'和'average'参数的支持,提供了更多排名计算选项。
-
表达式元数据统一:改进了表达式元数据的处理,统一了嵌套over语句、嵌套聚合以及聚合上过滤的异常处理,使错误信息更加清晰一致。
-
类型提示增强:新增了
polars字面量别名,改善了代码的静态类型检查支持。
问题修复
v1.35.0版本修复了多个重要问题:
-
DuckDBLazyFrame.rename问题:修复了使用Python API时DuckDBLazyFrame.rename方法的问题。
-
nw.len().over异常:修复了在pandas-like模式下不必要的异常抛出问题。
测试与基础设施改进
开发团队在本版本中进行了多项测试和基础设施改进:
-
测试标记优化:使用skip替代xfail来标记不支持的测试用例,提高了测试报告的清晰度。
-
性能测试增强:现在可以打印最慢的测试用例,帮助识别性能瓶颈。
-
DuckDB支持改进:更多地使用Python API来实现DuckDB支持,提高了代码的维护性。
-
版本准备:为即将到来的v2版本进行了测试准备。
总结
Narwhals v1.35.0版本在性能、稳定性和功能完备性方面都做出了显著改进。特别是对类型推断的优化和对DuckDB支持的增强,将直接提升用户在处理大型数据集时的体验。虽然包含了一些破坏性变更,但这些变更是为了确保API的长期稳定性和一致性。建议所有用户升级到此版本,以获得更好的性能和更稳定的功能体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00