Narwhals v1.35.0 版本发布:性能优化与API改进
Narwhals 是一个为数据科学和数据分析领域设计的Python库,它提供了高效的数据处理能力,特别适合处理大规模数据集。该项目通过提供简洁的API和优化的执行引擎,帮助开发者更高效地进行数据操作和分析。
重大变更
本次发布的v1.35.0版本包含了一些重要的API变更,开发者需要特别注意:
-
Series.hist方法调整:该版本对Series.hist方法进行了调整,使其行为与Polars保持一致。这一变更可能会影响现有的直方图生成代码。
-
concat方法限制:现在明确禁止在LazyFrame上使用
concat(..., how="horizontal")
的水平连接操作。这一变更是为了确保API的一致性和稳定性。
性能优化
v1.35.0版本在性能方面做了显著改进:
- 类型推断优化:在
__getitem__
和filter
操作中,现在只使用序列的第一个元素来推断类型,这大大减少了类型推断的开销,特别是在处理大型数据集时。
功能增强
本版本引入了多项功能增强:
-
滚动函数稳定性:移除了rolling_*和ewm_mean函数的"unstable"标记,表明这些函数现在已经足够稳定,可以在生产环境中使用。
-
DuckDB表达式增强:为DuckDBExpr.rank方法新增了对'ordinal'、'max'和'average'参数的支持,提供了更多排名计算选项。
-
表达式元数据统一:改进了表达式元数据的处理,统一了嵌套over语句、嵌套聚合以及聚合上过滤的异常处理,使错误信息更加清晰一致。
-
类型提示增强:新增了
polars
字面量别名,改善了代码的静态类型检查支持。
问题修复
v1.35.0版本修复了多个重要问题:
-
DuckDBLazyFrame.rename问题:修复了使用Python API时DuckDBLazyFrame.rename方法的问题。
-
nw.len().over异常:修复了在pandas-like模式下不必要的异常抛出问题。
测试与基础设施改进
开发团队在本版本中进行了多项测试和基础设施改进:
-
测试标记优化:使用skip替代xfail来标记不支持的测试用例,提高了测试报告的清晰度。
-
性能测试增强:现在可以打印最慢的测试用例,帮助识别性能瓶颈。
-
DuckDB支持改进:更多地使用Python API来实现DuckDB支持,提高了代码的维护性。
-
版本准备:为即将到来的v2版本进行了测试准备。
总结
Narwhals v1.35.0版本在性能、稳定性和功能完备性方面都做出了显著改进。特别是对类型推断的优化和对DuckDB支持的增强,将直接提升用户在处理大型数据集时的体验。虽然包含了一些破坏性变更,但这些变更是为了确保API的长期稳定性和一致性。建议所有用户升级到此版本,以获得更好的性能和更稳定的功能体验。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









