TensorZero 2025.03.2版本发布:并行工具调用与推理端点优化
TensorZero作为一个专注于AI模型训练与推理的开源平台,最新发布的2025.03.2版本带来了一系列重要的功能改进和问题修复。本次更新主要围绕并行工具调用行为的调整、OpenAI兼容端点的优化以及系统稳定性的提升展开。
核心变更解析
并行工具调用默认行为调整
本次版本中最值得注意的变化是parallel_tool_calls参数的默认值从false调整为null。这一变更意味着系统现在将遵循模型提供商的默认行为,而非强制禁用并行工具调用功能。
对于使用OpenAI等默认启用并行工具调用的提供商,这一调整将显著提升模型的多任务处理能力。开发者需要注意,如果之前依赖TensorZero禁用此功能的行为,现在需要显式设置parallel_tool_calls: false来保持原有逻辑。
OpenAI兼容端点改进
TensorZero对OpenAI兼容推理端点进行了两项重要优化:
-
多系统消息支持:现在端点可以处理多个
system或developer消息,系统会自动将这些消息连接起来。这一改进使得复杂的系统提示构建更加灵活。 -
参数传递标准化:TensorZero特有的参数(如
episode_id、variant_name)现在推荐通过请求体中的tensorzero::前缀传递,替代原先的HTTP头部方式。这一变更将为未来的API统一性奠定基础,开发者应逐步迁移到新的参数传递方式。
嵌入式网关增强
新版本为openai-python客户端增加了嵌入式网关支持,开发者可以通过tensorzero.patch_openai_client方法轻松集成。这一特性简化了本地开发环境与TensorZero平台的对接流程,使得原型开发和测试更加便捷。
功能扩展与优化
针对Anthropic模型的用户,2025.03.2版本扩展了对"Extended Thinking"功能的支持,新增了signature字段用于thought内容块。这一增强使得思维链追踪和验证更加可靠。
在模型训练方面,本次发布新增了Together AI平台的监督微调示例笔记本,为开发者提供了基于演示数据的fine-tuning实践指南。这个资源对于希望快速上手模型调优的团队尤其有价值。
稳定性修复
针对ClickHouse 2025.2版本中引入的一个影响TensorZero UI推理详情页显示的bug,开发团队实现了临时解决方案,确保用户在升级底层数据库时不会遇到功能中断。这一修复体现了TensorZero对系统稳定性的持续关注。
升级建议
对于正在使用TensorZero平台的团队,建议:
- 检查代码中是否显式依赖
parallel_tool_calls的默认值,必要时进行调整 - 开始将OpenAI兼容端点中的TensorZero特有参数迁移到请求体格式
- 评估嵌入式网关功能是否适用于现有开发工作流
- 参考新增的训练示例笔记本优化模型调优流程
2025.03.2版本通过这些改进,进一步强化了TensorZero作为AI开发平台的功能完备性和易用性,为复杂AI应用的开发和部署提供了更强大的支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00