PySimpleGUI结合Matplotlib实现动态CPU监控图表的技术实践
背景介绍
在Python GUI开发中,PySimpleGUI是一个简单易用的库,而Matplotlib则是数据可视化的利器。本文将介绍如何将两者结合,实现一个动态更新的CPU使用率监控图表,并解决图表显示中的常见问题。
核心实现方案
1. 基础图表绘制
首先需要创建一个基本的图表绘制函数,该函数接收时间序列和CPU使用率数据,返回一个配置好的Matplotlib图表对象。
def create_plot(time, cpu):
fig = Figure()
ax = fig.add_subplot(111)
# 绘制数据线
ax.plot(time, cpu, color='red')
# 设置图表标题和坐标轴标签
ax.set_xlabel('时间', fontsize=10)
ax.set_ylabel('CPU使用率(%)', fontsize=10)
ax.grid(True)
# 配置时间轴格式
ax.xaxis.set_major_locator(mdates.AutoDateLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
fig.autofmt_xdate() # 自动调整日期标签角度
# 设置Y轴范围
ax.set_ylim(0, 100)
return fig
2. 图表嵌入GUI
PySimpleGUI的Canvas元素可以用来嵌入Matplotlib图表,需要专门的绘制函数:
def draw_figure(canvas, figure):
# 检查是否已有图表存在,若有则清除
if hasattr(canvas, 'figure_canvas_agg'):
canvas.figure_canvas_agg.get_tk_widget().destroy()
# 创建新的图表画布
figure_canvas_agg = FigureCanvasTkAgg(figure, canvas)
figure_canvas_agg.draw()
figure_canvas_agg.get_tk_widget().pack(side='left', expand=1)
# 保存引用以便下次更新
canvas.figure_canvas_agg = figure_canvas_agg
return figure_canvas_agg
3. 动态更新机制
为了实现图表的动态更新,我们需要设置一个刷新按钮,并在点击时重新获取数据并重绘图表:
# 创建GUI布局
layout = [
[sg.Text('处理器监控')],
[sg.Frame("CPU使用率", [[canvas]], size=(500,500))],
[sg.Button('刷新', key='-REFRESH-')]
]
window = sg.Window('处理器监控', layout, finalize=True)
# 初始数据加载
time, cpu = get_cpu_usage()
draw_figure(window['-CPUchart-'].TKCanvas, create_plot(time, cpu))
# 事件循环
while True:
event, values = window.read()
if event == '-REFRESH-':
time, cpu = get_cpu_usage()
draw_figure(window['-CPUchart-'].TKCanvas, create_plot(time, cpu))
if event == sg.WIN_CLOSED:
break
关键技术点解析
-
时间轴处理:使用Matplotlib的dates模块(mdates)来处理时间序列数据,AutoDateLocator自动选择合适的时间间隔,DateFormatter控制时间显示格式。
-
图表更新机制:每次刷新时,先销毁旧的图表widget再创建新的,避免内存泄漏和性能问题。
-
布局优化:通过设置expand_x和expand_y参数让图表随窗口大小自适应,使用Frame元素为图表添加边框和标题。
-
性能考虑:对于高频更新的场景,可以考虑只更新数据而不是重建整个图表,但对于CPU监控这种低频场景,完全重建的方式已经足够。
常见问题解决方案
-
X轴标签重叠:通过fig.autofmt_xdate()自动旋转标签角度,避免重叠。
-
Y轴范围固定:明确设置set_ylim(0,100)确保不同时间段的图表具有可比性。
-
图表刷新闪烁:确保在绘制新图表前正确销毁旧图表,避免残留元素。
-
时间格式显示:使用DateFormatter('%H:%M')只显示小时和分钟,适合监控场景。
扩展应用
这种技术方案不仅适用于CPU监控,还可以应用于:
- 内存使用监控
- 网络流量监控
- 传感器数据实时显示
- 股票价格走势图
只需替换数据获取函数和适当调整图表配置,就能快速构建各种监控类应用。
总结
通过PySimpleGUI和Matplotlib的结合,我们可以轻松创建专业级的监控界面。本文介绍的方法解决了时间序列数据显示、图表动态更新等关键问题,为开发者提供了一个可靠的技术方案。这种方案既保持了PySimpleGUI的简洁性,又发挥了Matplotlib强大的可视化能力,是开发监控类应用的理想选择。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00