React Native Testing Library 中解决 Jest 测试的 ES6 模块解析问题
在 React Native 项目中使用 Jest 进行单元测试时,开发人员经常会遇到 "Unexpected token 'export'" 的错误。这个问题通常出现在测试环境尝试解析包含 ES6 模块语法的第三方依赖时。本文将深入分析这个常见问题的原因,并提供完整的解决方案。
问题根源分析
当 Jest 运行测试时,它会通过 Babel 将代码转换为 Jest 能够理解的格式。错误的核心在于 Jest 的转换配置未能正确处理某些依赖中的 ES6 模块语法。这通常由以下几个因素导致:
- Babel 配置不完整或冲突
- Jest 的 transformIgnorePatterns 设置不当
- 预设(preset)之间的兼容性问题
- 缺少必要的插件支持
解决方案详解
1. 优化 Jest 配置
正确的 Jest 配置应该专注于 React Native 测试环境,避免过度复杂的转换规则:
module.exports = {
preset: "@testing-library/react-native",
moduleFileExtensions: ["ts", "tsx", "js", "jsx", "json"],
setupFilesAfterEnv: ["<rootDir>/jestSetup.ts"]
};
关键点说明:
- 使用
@testing-library/react-native预设,它已经包含了 React Native 测试所需的基本配置 - 明确指定支持的文件扩展名
- 通过
setupFilesAfterEnv加载测试环境设置
2. 完善测试环境设置
在 jestSetup.ts 文件中,我们需要确保测试环境正确初始化:
import "@testing-library/react-native/extend-expect";
jest.mock("react-native/Libraries/Animated/NativeAnimatedHelper");
jest.mock("react-native-webrtc");
jest.mock("node-fetch", () => require("jest-fetch-mock"));
这段代码完成了三个重要任务:
- 扩展了 React Native Testing Library 的断言能力
- 模拟了 React Native 的动画模块
- 处理了网络请求的模拟
3. 精简 Babel 配置
Babel 配置应该保持简洁,避免不必要的预设和插件:
module.exports = {
presets: ["module:@react-native/babel-preset"],
plugins: [
"react-native-reanimated/plugin",
"babel-plugin-styled-components",
[
"module-resolver",
{
root: ["./src"],
alias: {}
}
]
]
};
这个配置的特点:
- 仅使用 React Native 官方推荐的 Babel 预设
- 只包含项目实际需要的插件
- 保持了模块解析功能
最佳实践建议
-
避免混合多个预设:不要同时使用
@react-native/babel-preset和@babel/preset-react,这可能导致冲突 -
谨慎使用 transformIgnorePatterns:除非必要,否则不要过度排除 node_modules 中的模块转换
-
保持配置简洁:从最小配置开始,逐步添加必要的功能,而不是一开始就使用复杂配置
-
定期更新依赖:确保 Jest、Babel 和相关测试库保持最新版本,以获得最佳兼容性
-
统一测试环境:确保开发环境和 CI 环境使用相同的 Node.js 和包管理器版本
总结
解决 React Native 测试中的 ES6 模块解析问题,关键在于正确配置 Jest 和 Babel 的协作关系。通过简化配置、使用官方推荐的预设、合理设置测试环境,可以避免大多数模块解析相关的问题。本文提供的解决方案已经在实际项目中得到验证,能够有效解决 "Unexpected token 'export'" 这类错误,为 React Native 项目的测试提供稳定可靠的基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00