React Native Testing Library 中解决 Jest 测试的 ES6 模块解析问题
在 React Native 项目中使用 Jest 进行单元测试时,开发人员经常会遇到 "Unexpected token 'export'" 的错误。这个问题通常出现在测试环境尝试解析包含 ES6 模块语法的第三方依赖时。本文将深入分析这个常见问题的原因,并提供完整的解决方案。
问题根源分析
当 Jest 运行测试时,它会通过 Babel 将代码转换为 Jest 能够理解的格式。错误的核心在于 Jest 的转换配置未能正确处理某些依赖中的 ES6 模块语法。这通常由以下几个因素导致:
- Babel 配置不完整或冲突
- Jest 的 transformIgnorePatterns 设置不当
- 预设(preset)之间的兼容性问题
- 缺少必要的插件支持
解决方案详解
1. 优化 Jest 配置
正确的 Jest 配置应该专注于 React Native 测试环境,避免过度复杂的转换规则:
module.exports = {
preset: "@testing-library/react-native",
moduleFileExtensions: ["ts", "tsx", "js", "jsx", "json"],
setupFilesAfterEnv: ["<rootDir>/jestSetup.ts"]
};
关键点说明:
- 使用
@testing-library/react-native
预设,它已经包含了 React Native 测试所需的基本配置 - 明确指定支持的文件扩展名
- 通过
setupFilesAfterEnv
加载测试环境设置
2. 完善测试环境设置
在 jestSetup.ts
文件中,我们需要确保测试环境正确初始化:
import "@testing-library/react-native/extend-expect";
jest.mock("react-native/Libraries/Animated/NativeAnimatedHelper");
jest.mock("react-native-webrtc");
jest.mock("node-fetch", () => require("jest-fetch-mock"));
这段代码完成了三个重要任务:
- 扩展了 React Native Testing Library 的断言能力
- 模拟了 React Native 的动画模块
- 处理了网络请求的模拟
3. 精简 Babel 配置
Babel 配置应该保持简洁,避免不必要的预设和插件:
module.exports = {
presets: ["module:@react-native/babel-preset"],
plugins: [
"react-native-reanimated/plugin",
"babel-plugin-styled-components",
[
"module-resolver",
{
root: ["./src"],
alias: {}
}
]
]
};
这个配置的特点:
- 仅使用 React Native 官方推荐的 Babel 预设
- 只包含项目实际需要的插件
- 保持了模块解析功能
最佳实践建议
-
避免混合多个预设:不要同时使用
@react-native/babel-preset
和@babel/preset-react
,这可能导致冲突 -
谨慎使用 transformIgnorePatterns:除非必要,否则不要过度排除 node_modules 中的模块转换
-
保持配置简洁:从最小配置开始,逐步添加必要的功能,而不是一开始就使用复杂配置
-
定期更新依赖:确保 Jest、Babel 和相关测试库保持最新版本,以获得最佳兼容性
-
统一测试环境:确保开发环境和 CI 环境使用相同的 Node.js 和包管理器版本
总结
解决 React Native 测试中的 ES6 模块解析问题,关键在于正确配置 Jest 和 Babel 的协作关系。通过简化配置、使用官方推荐的预设、合理设置测试环境,可以避免大多数模块解析相关的问题。本文提供的解决方案已经在实际项目中得到验证,能够有效解决 "Unexpected token 'export'" 这类错误,为 React Native 项目的测试提供稳定可靠的基础。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0104Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile02
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









