BEIR项目v2.1.0版本发布:全面支持最新嵌入模型评估
项目简介
BEIR是一个专注于信息检索系统评估的开源工具库,它为研究人员和开发者提供了标准化的评估框架和数据集。BEIR支持多种检索模型的评估,包括密集检索、稀疏检索以及混合检索方法。该项目通过提供统一的评估接口,极大地简化了不同检索模型在相同数据集上的性能对比工作。
版本核心更新
1. 支持最新嵌入模型评估
BEIR v2.1.0版本最显著的改进是全面支持了当前最先进的嵌入模型评估能力:
HuggingFace模型支持:新增了models.HuggingFace模块,可以轻松评估E5系列模型、使用Tevatron微调的PEFT模型(如RepLLAMA)以及HuggingFace上的任何自定义嵌入模型。该模块支持三种池化技术:均值池化(mean)、CLS池化和EOS池化。
SentenceTransformer增强:更新后的models.SentenceTransformer模块现在支持提示词(prompts)和提示名称(prompt_names)等最新特性,能够评估Stella、modernBERT-gte-base等基于LLM的解码器模型。特别值得一提的是,现在所有sentence-transformer模型都可以在多GPU环境下进行评估。
NVEmbed专用支持:新增models.NVEmbed模块专门用于评估NVIDIA的NV-Embed-v2模型,虽然目前需要特定版本的transformers库配合使用。
LLM2Vec集成:新增models.LLM2Vec模块支持评估McGill-NLP团队开发的LLM2Vec系列跨注意力嵌入模型。
2. 评估工具增强
新版本引入了两个实用的工具函数:
util.save_runfile()函数可将评估结果保存为TREC标准格式的运行文件,这对于后续的重新排序(re-ranking)分析非常有用。
util.save_results()函数则将评估指标(包括nDCG、MAP、Recall、Precision等)保存为JSON格式,便于后续分析和比较。
3. 技术栈升级
项目将Python最低版本要求从3.6升级到了3.9+,采用了更现代的代码格式化工具ruff,并重构了项目结构使用pyproject.toml进行管理。这些改进使项目维护更加规范,代码质量更高。
技术细节解析
模型评估示例
以评估E5-Mistral-7B模型为例,开发者可以这样配置:
query_prompt = "Given a query on respiratory diseases, retrieve documents that answer the query"
passage_prompt = ""
dense_model = models.HuggingFace(
model="intfloat/e5-mistral-7b-instruct",
max_length=512,
append_eos_token=True,
pooling="eos",
normalize=True,
prompts={"query": query_prompt, "passage": passage_prompt},
attn_implementation="flash_attention_2",
torch_dtype="bfloat16"
)
对于PEFT模型(如RepLLAMA)的评估,配置也非常直观:
dense_model = models.HuggingFace(
model="meta-llama/Llama-2-7b-hf",
peft_model_path="castorini/repllama-v1-7b-lora-passage",
max_length=512,
append_eos_token=True,
pooling="eos",
normalize=True,
prompts={"query": "query: ", "passage": "passage: "},
attn_implementation="flash_attention_2",
torch_dtype="bfloat16",
)
评估结果保存
新版本简化了评估结果的保存过程:
ndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values)
mrr = retriever.evaluate_custom(qrels, results, retriever.k_values, metric="mrr")
results_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "results")
os.makedirs(results_dir, exist_ok=True)
util.save_runfile(os.path.join(results_dir, f"{dataset}.run.trec"), results)
util.save_results(os.path.join(results_dir, f"{dataset}.json"), ndcg, _map, recall, precision, mrr)
未来展望
根据项目维护者的说明,BEIR的下一个主要更新将包括对ColBERT评估的支持,这将进一步丰富项目的评估能力。ColBERT作为一种高效的后期交互模型,在信息检索领域有着广泛的应用,其加入将使BEIR的评估体系更加全面。
总结
BEIR v2.1.0版本的发布标志着该项目在支持最新嵌入模型评估方面迈出了重要一步。通过简化评估流程、支持更多模型架构、提供更友好的结果保存方式,BEIR继续巩固其作为信息检索评估标准工具的地位。对于从事信息检索研究和应用开发的团队来说,这一更新将极大地提高模型评估的效率和可靠性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00