Apache Kyuubi中Spark Jars配置在Scala模式下的加载问题分析
问题背景
Apache Kyuubi作为一个企业级数据湖分析平台,提供了多语言支持的能力,其中包括SQL和Scala两种主要操作模式。在实际使用过程中,用户发现通过spark.jars参数添加的JAR包在Scala模式下无法正常使用,而同样的JAR包在SQL模式下却能正常工作。
问题现象
当用户通过beeline客户端连接Kyuubi时,使用以下命令指定JAR包:
beeline -u "jdbc:kyuubi://kyuubi:10009/default" \
--hiveconf spark.jars=hdfs:///tmp/kyuubi-hive-jdbc-shaded-1.9.0.jar \
--hiveconf kyuubi.operation.language=scala
在Scala模式下出现以下异常情况:
- 使用反射方式加载类可以成功:
Class.forName("org.apache.kyuubi.jdbc.KyuubiHiveDriver").getSimpleName Class.forName("org.apache.kyuubi.jdbc.KyuubiHiveDriver").newInstance - 直接导入类或实例化类会失败:
错误提示为"object jdbc is not a member of package org.apache.kyuubi"。import org.apache.kyuubi.jdbc.KyuubiHiveDriver new org.apache.kyuubi.jdbc.KyuubiHiveDriver()
技术分析
根本原因
这个问题源于Spark和Scala REPL环境的类加载机制差异:
-
Spark Jars加载机制:通过
spark.jars参数指定的JAR包会被Spark分发到集群节点,并添加到执行器的classpath中,因此可以通过反射方式加载类。 -
Scala REPL环境:Scala的交互式解释器(REPL)使用自己的类加载器体系,默认情况下不会自动加载
spark.jars指定的JAR包。这导致虽然类存在于JVM的classpath中,但Scala编译器在解析代码时无法找到这些类定义。
影响范围
该问题影响所有版本的Kyuubi,包括最新的master分支和1.7.x到1.9.x的稳定版本。无论在YARN、Kubernetes集群模式还是本地模式下都会出现相同的问题。
解决方案
针对这个问题,Kyuubi社区已经提供了修复方案,主要思路是:
-
显式加载JAR包:在Scala REPL初始化时,主动将
spark.jars配置指定的JAR包加载到REPL环境中。 -
类路径管理:确保Scala编译器能够访问到所有通过Spark配置添加的依赖项。
最佳实践建议
对于需要使用外部JAR包的用户,建议:
-
如果可能,优先使用SQL模式操作,避免Scala模式下的类加载问题。
-
对于必须在Scala模式下使用的外部依赖,可以考虑以下替代方案:
- 将JAR包预先部署到所有节点的特定目录
- 使用
--jars参数直接传递给beeline客户端 - 在代码中使用反射方式访问类,而不是直接导入
-
升级到包含修复的Kyuubi版本,以获得更完整的Scala模式支持。
总结
这个问题揭示了分布式计算环境中类加载机制的复杂性,特别是在多语言支持场景下。Kyuubi通过不断完善其类加载策略,为用户提供了更加一致和可靠的多语言编程体验。理解这类问题的本质有助于开发者在实际工作中更好地处理依赖管理和类加载相关的问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00