DataFusion中数组类型聚合操作的内存管理问题分析
2025-05-31 11:59:14作者:卓艾滢Kingsley
问题背景
在Apache DataFusion项目中,当使用聚合函数处理数组类型数据时,发现了一个关键的内存管理问题。具体表现为:在相同数据量下,对字符串数组进行聚合操作时,内存消耗会异常增高,导致查询失败;而对普通字符串进行相同操作时,则表现正常。
问题现象
以一个简单的体育比赛数据为例,假设有一个包含10万行记录的表,每行包含:
- 一个包含1000个字符的字符串数组(game_id)
- 一个分数值(score)
- 一个队伍标识(team)
当执行如下聚合查询时:
SELECT team, first_value(game_id order by score) AS game_with_max_score
FROM games
GROUP BY team;
即使设置了10GB的内存限制,查询也会因资源耗尽而失败。然而,如果将game_id从字符串数组改为普通字符串,同样的查询在仅10MB内存限制下就能成功执行。
技术分析
根本原因
问题的核心在于DataFusion中first_value聚合函数的实现方式。该函数使用FirstValueAccumulator来保存每个分组的第一个值,而这个值是以ScalarValue的形式存储的。
对于不同类型的数据,ScalarValue的创建方式不同:
- 对于基本类型(如bool、int等),会直接提取值本身
- 对于数组类型(List),会保留指向原始数组的切片引用
这种差异导致了内存管理上的重大区别:
- 基本类型:仅存储实际值,内存占用小
- 数组类型:保留了整个原始数组的引用,导致内存占用被严重高估
影响范围
这个问题会产生两个主要影响:
- 内存计算错误:当所有分组值来自同一个RecordBatch时,整个批次的内存会被多次计算
- 内存泄漏风险:当分组值来自不同批次时,会不必要地保留多个完整批次的引用
解决方案
修复方案的核心思想是:对于数组类型,应该创建数据的独立副本,而不是保留原始数组的引用。这样可以确保:
- 内存计算准确反映实际使用量
- 避免不必要地保留大数据块的引用
技术启示
这个问题揭示了在实现复杂数据类型支持时需要考虑的几个重要方面:
- 内存管理策略需要根据数据类型特性进行差异化处理
- 聚合操作中的中间结果存储方式会显著影响内存使用效率
- 对于引用类型数据,需要特别注意避免意外的内存保留
总结
DataFusion中的这个内存管理问题展示了在处理复杂数据类型时可能遇到的陷阱。通过正确的内存管理策略,可以确保系统在处理数组等复杂类型时,既能保持功能正确性,又能维持合理的内存使用效率。这对于构建高性能的数据处理系统至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219