Next-Terminal 反向代理 HTTPS 配置问题分析与解决方案
问题背景
在使用 Next-Terminal 堡垒机系统时,许多用户希望通过反向代理方式实现 HTTPS 访问,但在配置过程中遇到了连接 SSH 资产失败的问题。具体表现为:通过 HTTP 直接映射端口可以正常连接 SSH 资产,但通过 Nginx 等反向代理配置 HTTPS 后,虽然能访问 Web 界面,却无法成功连接 SSH 资产,系统会返回"websocket error undefined"和"connection is closed"的错误提示。
问题分析
这个问题的根源在于 WebSocket 协议在反向代理环境下的特殊处理需求。Next-Terminal 使用 WebSocket 来实现终端会话的实时通信,而 WebSocket 连接在 HTTPS 环境下需要额外的配置才能正常工作。
当直接使用 HTTP 协议时,WebSocket 连接可以无障碍建立。但一旦通过反向代理配置 HTTPS,如果没有正确设置代理头部信息,WebSocket 握手过程就会失败,导致终端会话无法建立。
解决方案
要解决这个问题,需要在反向代理配置中添加对 WebSocket 协议的特殊处理。以下是经过验证的 Nginx 配置方案:
server {
listen 443 ssl;
server_name your.domain.com;
ssl_certificate /path/to/cert.pem;
ssl_certificate_key /path/to/cert.key;
ssl_session_cache shared:SSL:1m;
ssl_session_timeout 5m;
ssl_ciphers HIGH:!aNULL:!MD5;
ssl_prefer_server_ciphers on;
location / {
proxy_pass http://localhost:8088;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
}
}
关键配置说明
-
proxy_set_header Upgrade $http_upgrade
这个指令告诉 Nginx 将客户端的 Upgrade 头部传递给后端服务器,这对于 WebSocket 握手至关重要。 -
proxy_set_header Connection "upgrade"
这个指令确保连接类型被正确设置为"upgrade",允许协议从 HTTP 切换到 WebSocket。 -
X-Forwarded- 头部*
这些头部确保后端服务器能够获取客户端的真实 IP 和原始协议信息,对于日志记录和安全检查很重要。
常见问题排查
如果按照上述配置后仍然无法连接 SSH 资产,可以检查以下几点:
- 确认 Nginx 配置已重新加载(执行
nginx -s reload) - 检查防火墙是否放行了 WebSocket 使用的端口
- 查看 Next-Terminal 和 Nginx 的日志文件,寻找错误信息
- 确保 SSL 证书有效且未被浏览器拦截
最佳实践建议
- 在生产环境中,建议使用有效的 CA 签发的 SSL 证书,而非自签名证书
- 可以考虑添加 HTTP 到 HTTPS 的自动跳转,强制使用安全连接
- 对于高安全性要求的场景,可以配置额外的 WebSocket 安全策略
- 定期检查 SSL 证书的有效期,避免因证书过期导致服务中断
通过以上配置和注意事项,Next-Terminal 可以在 HTTPS 反向代理环境下正常工作,既保证了通信安全,又不影响终端连接功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00