py-Goldsberry 项目教程
2024-09-17 15:02:12作者:龚格成
1. 项目介绍
py-Goldsberry 是一个 Python 包,旨在为用户提供从 stats.nba.com 获取数据的便捷途径,并以易于分析的格式呈现。该包的设计初衷是为了促进对 NBA 数据的创新分析。通过简单的命令,用户可以访问网站上几乎所有可用的数据,并以易于分析的格式获取这些数据。
2. 项目快速启动
安装
首先,你需要安装 py-Goldsberry 包。你可以通过 pip 命令来安装:
pip install py-goldsberry
加载包
安装完成后,你可以在 Python 会话中加载该包:
import goldsberry
import pandas as pd
获取球员列表
你可以使用 PlayerList() 类来获取球员列表:
players2010 = goldsberry.PlayerList(Season='2010-11')
players2010 = pd.DataFrame(players2010.players())
print(players2010.head())
获取比赛列表
如果你想获取当前赛季的所有比赛列表,可以使用 GameIDs() 类:
games = goldsberry.GameIDs()
games = pd.DataFrame(games.game_list())
print(games.head())
3. 应用案例和最佳实践
数据可视化
py-Goldsberry 不仅可以帮助你获取数据,还可以与数据可视化工具结合使用。例如,你可以使用 Matplotlib 或 Seaborn 来可视化 NBA 投篮数据:
import matplotlib.pyplot as plt
# 获取投篮数据
shots = goldsberry.PlayerTracking(player_id=201939, Season='2018-19').shot_chart()
shots = pd.DataFrame(shots)
# 绘制投篮热图
plt.figure(figsize=(12, 8))
plt.scatter(shots['LOC_X'], shots['LOC_Y'], c=shots['SHOT_MADE_FLAG'], cmap='RdYlGn', alpha=0.7)
plt.title('Stephen Curry Shot Chart 2018-19')
plt.show()
数据分析
你可以使用 pandas 进行更深入的数据分析。例如,计算某个球员的投篮命中率:
shots['made'] = shots['SHOT_MADE_FLAG'].apply(lambda x: 'Made' if x == 1 else 'Missed')
shot_stats = shots.groupby('made').size()
print(shot_stats)
4. 典型生态项目
NBA API
py-Goldsberry 是基于 NBA 官方提供的 API 构建的。你可以通过访问 NBA API 了解更多关于 NBA 数据的信息。
pandas
py-Goldsberry 的设计与 pandas 紧密结合,pandas 是一个强大的数据处理和分析工具,广泛应用于数据科学领域。
Matplotlib 和 Seaborn
数据可视化是数据分析的重要组成部分。Matplotlib 和 Seaborn 是 Python 中常用的数据可视化库,可以帮助你更好地理解和展示数据。
通过这些工具的结合使用,你可以更深入地分析和理解 NBA 数据,发现其中的规律和趋势。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
暂无简介
Dart
633
143
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
243
316
Ascend Extension for PyTorch
Python
194
212