首页
/ py-Goldsberry 项目教程

py-Goldsberry 项目教程

2024-09-17 06:33:03作者:龚格成

1. 项目介绍

py-Goldsberry 是一个 Python 包,旨在为用户提供从 stats.nba.com 获取数据的便捷途径,并以易于分析的格式呈现。该包的设计初衷是为了促进对 NBA 数据的创新分析。通过简单的命令,用户可以访问网站上几乎所有可用的数据,并以易于分析的格式获取这些数据。

2. 项目快速启动

安装

首先,你需要安装 py-Goldsberry 包。你可以通过 pip 命令来安装:

pip install py-goldsberry

加载包

安装完成后,你可以在 Python 会话中加载该包:

import goldsberry
import pandas as pd

获取球员列表

你可以使用 PlayerList() 类来获取球员列表:

players2010 = goldsberry.PlayerList(Season='2010-11')
players2010 = pd.DataFrame(players2010.players())
print(players2010.head())

获取比赛列表

如果你想获取当前赛季的所有比赛列表,可以使用 GameIDs() 类:

games = goldsberry.GameIDs()
games = pd.DataFrame(games.game_list())
print(games.head())

3. 应用案例和最佳实践

数据可视化

py-Goldsberry 不仅可以帮助你获取数据,还可以与数据可视化工具结合使用。例如,你可以使用 Matplotlib 或 Seaborn 来可视化 NBA 投篮数据:

import matplotlib.pyplot as plt

# 获取投篮数据
shots = goldsberry.PlayerTracking(player_id=201939, Season='2018-19').shot_chart()
shots = pd.DataFrame(shots)

# 绘制投篮热图
plt.figure(figsize=(12, 8))
plt.scatter(shots['LOC_X'], shots['LOC_Y'], c=shots['SHOT_MADE_FLAG'], cmap='RdYlGn', alpha=0.7)
plt.title('Stephen Curry Shot Chart 2018-19')
plt.show()

数据分析

你可以使用 pandas 进行更深入的数据分析。例如,计算某个球员的投篮命中率:

shots['made'] = shots['SHOT_MADE_FLAG'].apply(lambda x: 'Made' if x == 1 else 'Missed')
shot_stats = shots.groupby('made').size()
print(shot_stats)

4. 典型生态项目

NBA API

py-Goldsberry 是基于 NBA 官方提供的 API 构建的。你可以通过访问 NBA API 了解更多关于 NBA 数据的信息。

pandas

py-Goldsberry 的设计与 pandas 紧密结合,pandas 是一个强大的数据处理和分析工具,广泛应用于数据科学领域。

Matplotlib 和 Seaborn

数据可视化是数据分析的重要组成部分。Matplotlib 和 Seaborn 是 Python 中常用的数据可视化库,可以帮助你更好地理解和展示数据。

通过这些工具的结合使用,你可以更深入地分析和理解 NBA 数据,发现其中的规律和趋势。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
136
1.89 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
71
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.28 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
918
550
PaddleOCRPaddleOCR
飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署) Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
46
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
273
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16