CasADi项目中密集矩阵稀疏模式的存储优化探讨
背景介绍
在自动微分和数值优化领域,CasADi是一个广泛使用的开源框架。在实际应用中,当使用代码生成功能处理包含密集矩阵参数的函数时,会遇到一个显著的存储效率问题——生成的代码会完整存储密集矩阵的稀疏模式信息。
问题分析
当前CasADi处理密集矩阵稀疏模式的方式是将矩阵中每个元素的位置信息都显式存储。对于一个1000×1000的矩阵,这意味着需要存储超过100万个条目,导致生成的代码体积急剧膨胀。在实际案例中,稀疏模式数据甚至可能占到整个目标代码大小的90%。
值得注意的是,这些稀疏模式数据在函数主体中并不直接使用,仅用于支持特定API函数的查询操作。这种设计导致了显著的存储资源浪费。
技术细节
CasADi当前的稀疏模式存储格式采用整数向量表示:
- 前两个元素表示矩阵维度(行数,列数)
- 接下来的(列数+1)个元素记录每列的非零元素偏移量
- 最后存储所有非零元素的行索引
对于密集矩阵而言,非零元素总数等于矩阵元素总数(行数×列数),这使得最后一部分的行索引信息实际上是冗余的,因为可以通过简单的计算推导出来。
优化可能性
理论上可以将存储需求从原来的(2+(列数+1)+行数×列数)降低到(2+(列数+1))。但实现这一优化需要满足两个关键条件:
- 所有使用稀疏模式的算法都需要专门处理密集矩阵的特殊情况
- 需要确保整个代码库中所有相关算法的一致性修改
目前CasADi已经对部分常见算法(如矩阵乘法)进行了这种特殊处理,但尚未全面覆盖所有相关操作。
深入讨论
更进一步的技术方案可以考虑在稀疏模式向量的第三个元素引入特殊标记值,用于指示不同的存储模式(如三角矩阵模式或高阶张量)。这种扩展设计将提供更大的灵活性,但同样需要在整个框架中进行一致性修改。
实际进展
在CasADi的最新开发分支中已经引入了一个相关改进:当使用force_canonical选项设置为false进行代码生成时,通过API暴露的稀疏模式(Function_sparsity_in/Function_sparsity_out)将会被压缩存储。
总结
虽然实现更紧凑的密集矩阵稀疏模式存储是一个有价值的优化方向,但由于需要保证整个框架的一致性和可维护性,这项改进尚未全面实施。开发者可以根据实际需求在自己的分支中实现特定优化,或者等待CasADi未来版本中可能引入的官方解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00