XXHash 技术文档
2024-12-27 02:35:05作者:廉彬冶Miranda
1. 安装指南
首先,您需要确保您的系统中已经安装了Ruby。XXHash 是一个Ruby的封装库,它依赖于Ruby环境。在安装XXHash之前,可以通过在终端运行ruby -v来检查Ruby是否已经安装以及其版本号。
接下来,使用Ruby的包管理器gem来安装XXHash:
gem install xxhash
在成功安装之后,您就可以在Ruby项目中导入并使用XXHash库了。
2. 项目的使用说明
XXHash是一个为Ruby提供的xxHash算法的封装库。xxHash是一个极快的非加密哈希算法,可以在RAM速度限制下进行处理。以下是基本的使用方法:
首先,您需要在Ruby脚本或环境中导入XXHash库:
require 'xxhash'
然后,可以使用以下方法生成哈希值:
text = "test"
seed = 12345
# 生成32位哈希值
hash_value = XXhash.xxh32(text, seed)
puts hash_value # 输出: 3834992036
如果不提供种子值(seed),默认使用0作为种子值。
XXHash也支持使用IO对象:
hash_value_stream = XXhash.xxh32_stream(StringIO.new('test'), 123)
puts hash_value_stream # 输出: 2758658570
可以直接使用文件路径生成哈希值,避免昂贵的Ruby相关操作:
hash_value_file = XXhash.xxh32_file(__FILE__)
puts hash_value_file
此外,您还可以传递一个块大小作为第三个参数,默认块大小是32字节。
XXH64算法也是受支持的,您可以使用xxh64、xxh64_stream和.xxh64_file方法。
3. 项目API使用文档
以下是XXHash库提供的主要API及其用法:
XXhash.xxh32(text, seed, chunk_size=32):计算给定文本的32位哈希值。XXhash.xxh32_stream(io, seed, chunk_size=32):使用IO对象计算哈希值。XXhash.xxh32_file(file_path, seed=0, chunk_size=32):直接使用文件路径计算哈希值。XXhash.xxh64(text, seed=0, chunk_size=32):计算给定文本的64位哈希值。XXhash.xxh64_stream(io, seed=0, chunk_size=32):使用IO对象计算64位哈希值。XXhash.xxh64_file(file_path, seed=0, chunk_size=32):直接使用文件路径计算64位哈希值。
请注意,所有方法都接受一个文本字符串或IO对象,一个种子值,以及可选的块大小参数。
4. 项目安装方式
项目的安装方式已在“安装指南”一节中详细介绍。简要概括,您只需使用以下命令即可安装XXHash:
gem install xxhash
以上就是关于XXHash项目的详细技术文档。如果您有任何贡献或建议,请按照项目README中的指示进行操作。感谢您使用XXHash!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350