NGXS状态管理库中的NaN值导致的选择器性能问题解析
2025-06-20 00:52:17作者:邓越浪Henry
问题背景
在NGXS状态管理库中,选择器(selector)的memoization(记忆化)机制是提升性能的关键特性。它通过缓存计算结果,避免在相同输入下重复计算。然而,当选择器返回NaN(Not a Number)值时,这一机制会出现意外行为。
问题现象
当存在以下情况时:
- 一个选择器返回NaN值
- 另一个选择器依赖这个返回NaN的选择器
此时,依赖NaN的选择器会在任何状态变更时都重新计算,即使其输入实际上没有变化。这导致了严重的性能问题,因为无关的状态变更也会触发不必要的重新计算。
根本原因
这个问题的根源在于JavaScript的一个特殊行为:NaN !== NaN。在JavaScript中,NaN是唯一一个不等于自身的值。NGXS内部使用严格相等(===)来比较前后值是否相同,以决定是否需要重新计算。当选择器返回NaN时,每次比较都会认为值发生了变化,因为NaN !== NaN始终为true。
技术细节
NGXS的选择器memoization机制通常工作流程如下:
- 存储上一次的计算结果
- 当状态变化时,获取新的输入值
- 比较新旧值是否相同
- 如果相同,返回缓存结果;如果不同,重新计算
对于NaN值的特殊处理缺失,导致了这个流程在第三步出现意外行为。
解决方案
借鉴其他成熟库(如memoize-one)的处理方式,可以修改值比较逻辑,特殊处理NaN情况。具体实现可考虑:
function isEqual(a, b) {
if (a !== a) { // 仅当a是NaN时为true
return b !== b; // 仅当b也是NaN时为true
}
return a === b;
}
这种处理方式能够正确识别两个NaN值是"相等"的,从而保持memoization的有效性。
影响范围
这个问题影响所有使用NGXS且有以下特征的场景:
- 选择器计算过程中可能产生NaN值
- 存在选择器链式依赖关系
- 应用中状态变更频繁
特别是在涉及数学计算、表单验证或数据转换的场景中容易出现此问题。
最佳实践
为避免此类问题,开发者可以:
- 在选择器中避免直接返回NaN,可考虑返回null或undefined
- 对可能产生NaN的计算进行包装处理
- 在依赖数学计算的选择器中添加NaN检查
总结
NGXS作为Angular生态中重要的状态管理解决方案,其性能优化机制需要处理JavaScript的各种边界情况。这个NaN导致的memoization失效问题提醒我们,在状态管理设计中需要考虑语言特性的所有可能性。通过合理的值比较策略,可以确保选择器在各种情况下都能正确工作,保持应用的高性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881