NGXS状态管理库中的NaN值导致的选择器性能问题解析
2025-06-20 00:52:17作者:邓越浪Henry
问题背景
在NGXS状态管理库中,选择器(selector)的memoization(记忆化)机制是提升性能的关键特性。它通过缓存计算结果,避免在相同输入下重复计算。然而,当选择器返回NaN(Not a Number)值时,这一机制会出现意外行为。
问题现象
当存在以下情况时:
- 一个选择器返回NaN值
- 另一个选择器依赖这个返回NaN的选择器
此时,依赖NaN的选择器会在任何状态变更时都重新计算,即使其输入实际上没有变化。这导致了严重的性能问题,因为无关的状态变更也会触发不必要的重新计算。
根本原因
这个问题的根源在于JavaScript的一个特殊行为:NaN !== NaN。在JavaScript中,NaN是唯一一个不等于自身的值。NGXS内部使用严格相等(===)来比较前后值是否相同,以决定是否需要重新计算。当选择器返回NaN时,每次比较都会认为值发生了变化,因为NaN !== NaN始终为true。
技术细节
NGXS的选择器memoization机制通常工作流程如下:
- 存储上一次的计算结果
- 当状态变化时,获取新的输入值
- 比较新旧值是否相同
- 如果相同,返回缓存结果;如果不同,重新计算
对于NaN值的特殊处理缺失,导致了这个流程在第三步出现意外行为。
解决方案
借鉴其他成熟库(如memoize-one)的处理方式,可以修改值比较逻辑,特殊处理NaN情况。具体实现可考虑:
function isEqual(a, b) {
if (a !== a) { // 仅当a是NaN时为true
return b !== b; // 仅当b也是NaN时为true
}
return a === b;
}
这种处理方式能够正确识别两个NaN值是"相等"的,从而保持memoization的有效性。
影响范围
这个问题影响所有使用NGXS且有以下特征的场景:
- 选择器计算过程中可能产生NaN值
- 存在选择器链式依赖关系
- 应用中状态变更频繁
特别是在涉及数学计算、表单验证或数据转换的场景中容易出现此问题。
最佳实践
为避免此类问题,开发者可以:
- 在选择器中避免直接返回NaN,可考虑返回null或undefined
- 对可能产生NaN的计算进行包装处理
- 在依赖数学计算的选择器中添加NaN检查
总结
NGXS作为Angular生态中重要的状态管理解决方案,其性能优化机制需要处理JavaScript的各种边界情况。这个NaN导致的memoization失效问题提醒我们,在状态管理设计中需要考虑语言特性的所有可能性。通过合理的值比较策略,可以确保选择器在各种情况下都能正确工作,保持应用的高性能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
642
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
642