Mill构建工具中分离依赖解析与本地类路径的技术优化
在构建工具Mill的最新开发中,团队发现了一个可以显著提升构建效率的优化点。这个优化涉及将assembly任务的依赖处理过程拆分为两个独立阶段,使得上游本地模块的修改能够充分利用增量构建的优势。
传统上,Mill在构建assembly JAR包时,会同时处理两个关键部分:解析第三方依赖(resolvedRunIvyDeps)和收集本地模块的传递类路径(transitiveLocalClasspath)。这种耦合式的处理方式存在一个明显的效率问题——当开发者修改了某个本地模块的代码时,整个assembly任务需要重新执行所有步骤,包括那些实际上没有变化的第三方依赖解析工作。
通过将这两个步骤解耦,Mill实现了更精细化的增量构建。现在,当本地模块代码发生变化时,构建系统可以跳过已经缓存的第三方依赖解析结果,直接复用之前的解析数据,仅重新计算受影响的本地模块类路径。这种优化对于包含大量第三方依赖和多模块的项目尤其有价值,可以节省大量重复计算的时间。
这项优化最初是在开发Pull Request #4558时被发现的。开发者注意到,assembly任务的性能瓶颈部分来自于不必要的重复依赖解析。通过分析构建过程,团队决定重构任务执行流程,将原本单一的依赖处理阶段拆分为两个独立的阶段。
这种架构改进体现了Mill团队对构建性能的持续追求。分离关注点不仅提升了构建速度,还使得系统更加模块化,为未来可能的进一步优化奠定了基础。例如,未来可以考虑对第三方依赖解析结果实现更细粒度的缓存,或者对本地类路径计算引入更智能的变更检测机制。
对于使用Mill的开发者来说,这项优化意味着更快的构建循环时间,特别是在频繁修改本地模块代码的开发场景中。虽然这种改进在用户界面是不可见的内部实现变化,但它实实在在地提升了开发者的工作效率。
Mill作为一个现代化的构建工具,始终关注实际开发体验。通过这类持续的性能优化,Mill正在巩固其作为高效、灵活构建解决方案的地位,特别是在Scala和Java生态系统中。这项改进也展示了构建工具领域的一个通用原则:将耗时操作分解为可独立缓存和增量执行的步骤,是提升构建性能的有效途径。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00