NSwag v14.4.0 版本发布:性能优化与STJ原生代码生成支持
NSwag 是一个强大的.NET工具链,用于生成、解析和处理OpenAPI/Swagger规范文档,并能自动生成客户端代码。它支持从ASP.NET Core、Web API等框架生成API文档,同时也能为TypeScript、C#等语言生成客户端代码。最新发布的v14.4.0版本带来了一系列性能优化和功能增强。
性能优化亮点
本次版本在多个关键环节进行了性能优化,显著提升了处理大型API文档时的效率:
-
操作ID生成优化:改进了OpenApiDocument.GenerateOperationIds方法的实现,减少了不必要的计算开销,特别是在处理包含大量API端点的大型文档时效果明显。
-
响应模型缓存优化:对OpenApiOperation的ActualResponses和Responses属性进行了性能改进,减少了重复计算,提升了响应模型的访问速度。
-
字典操作优化:ObservableDictionary的CollectionChanged事件处理逻辑得到改进,减少了事件触发的频率,提升了集合操作的效率。
-
客户端生成优化:MultipleClientsFromOperationIdOperationNameGenerator中的重复检查逻辑更加高效,加快了客户端代码生成速度。
新功能:STJ原生C#代码生成支持
v14.4.0版本新增了对System.Text.Json(STJ)原生C#代码生成的支持。这一功能使得生成的客户端代码能够更好地与.NET Core 3.0及更高版本中引入的System.Text.Json序列化器配合工作,提供更高效的JSON处理能力。
开发者现在可以选择生成基于STJ的客户端代码,这将带来以下优势:
- 更高的序列化/反序列化性能
- 更低的内存分配
- 与.NET现代版本更好的兼容性
问题修复与改进
-
可选参数排序问题:修复了TypeScript和C#客户端生成中可选参数排序不正确的问题,确保生成的代码与API定义保持一致。
-
数组参数检查:修正了数组参数爆炸检查逻辑,防止在某些情况下错误地标记有效的数组参数。
-
项目目录解析:增加了对MSBuildProjectDirectory的回退支持,提高了在不同构建环境下项目目录解析的可靠性。
-
参数模型处理:OperationModelBase.GetActualParameters方法现在能够更好地处理缺少schema定义的情况,提高了代码的健壮性。
平台支持增强
本次更新为NSwag核心库添加了.NET 8目标框架支持,确保开发者可以在最新的.NET平台上使用NSwag的全部功能。同时,相关依赖项也进行了更新:
- 升级到NJsonSchema v11.3.2
- 升级到Namotion.Reflection v3.4.2
- 更新Microsoft.Extensions.ApiDescription到8.0.14版本
- 升级Swagger UI到v5.21.0
总结
NSwag v14.4.0版本通过一系列性能优化和功能增强,进一步巩固了其作为.NET生态系统中API开发首选工具的地位。特别是新增的STJ原生代码生成支持,为追求高性能的开发者提供了更好的选择。这些改进使得NSwag在处理大型API项目时更加高效,生成的客户端代码质量更高,与最新.NET平台的兼容性更好。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00