OpenNI 1.5.4.0 技术文档
2024-12-23 02:30:01作者:宣海椒Queenly
1. 安装指南
1.1 Windows 安装
1.1.1 系统要求
- Microsoft Visual Studio 2010
- Python 2.6+/3.x
- PyWin32
- WIX 3.5
- JDK 6.0
1.1.2 可选要求
- Microsoft WDK(用于构建 USB 设备驱动)
- Doxygen 和 GraphViz(用于构建文档)
1.1.3 安装步骤
- 卸载之前的版本。
- 进入目录
Platform\Win32\CreateRedist。 - 运行脚本:
- 32 位系统:
RedistMaker.bat y 32 y - 64 位系统:
RedistMaker.bat y 64 y
- 32 位系统:
- 安装生成的
.exe文件,路径为Platform\Win32\CreateRedist\FinalXX\OPENNI-WinXX-1.X.X.X.exe。
1.2 Linux 安装
1.2.1 系统要求
- GCC 4.x
- Python 2.6+/3.x
- LibUSB 1.0.x
- FreeGLUT3
- JDK 6.0
1.2.2 可选要求
- Doxygen 和 GraphViz(用于构建文档)
- Mono(用于构建 Mono 包装器)
1.2.3 安装步骤
- 进入目录
Platform/Linux/CreateRedist。 - 运行脚本:
./RedistMaker。 - 进入目录
Platform/Linux/Redist。 - 运行脚本:
sudo ./install.sh。
1.3 MacOSX 安装
1.3.1 系统要求
- Xcode 4.3.2(适用于 MacOSX 10.7)
- Xcode 3.2.6(适用于 MacOSX 10.6)
- LibUSB 1.0.x(补丁开发树)
1.3.2 安装步骤
- 安装 Xcode 并注册为 Mac 开发者。
- 通过 MacPorts 或源码编译安装 LibUSB。
2. 项目使用说明
2.1 基本使用
- OpenNI 是一个开源的跨平台框架,用于处理深度摄像头数据。它提供了对深度图像、彩色图像和用户跟踪的支持。
- 用户可以通过 API 获取深度数据、彩色图像数据,并进行进一步的处理。
2.2 示例程序
- OpenNI 提供了多个示例程序,位于
Platform/Linux/Build或Platform/Win32/Build目录下。 - 用户可以通过运行这些示例程序来了解如何使用 OpenNI 获取和处理数据。
3. 项目 API 使用文档
3.1 核心 API
- NiSimpleViewer: 一个简单的示例程序,展示了如何获取和显示深度图像。
- NiUserTracker: 一个用户跟踪示例,展示了如何检测和跟踪用户。
3.2 数据获取
- OpenNI::Device: 用于打开和关闭设备。
- OpenNI::DepthGenerator: 用于获取深度数据。
- OpenNI::ImageGenerator: 用于获取彩色图像数据。
3.3 数据处理
- OpenNI::MapOutputMode: 用于设置输出模式(分辨率、帧率等)。
- OpenNI::DepthMetaData: 用于获取深度数据的元信息。
4. 项目安装方式
4.1 源码编译
- 用户可以从 GitHub 获取源码,并根据平台要求进行编译。
- 编译步骤详见
Build Notes部分。
4.2 二进制安装
- 用户可以直接下载二进制文件进行安装,路径为
http://www.openni.org/Downloads/OpenNIModules.aspx。
4.3 环境变量配置
- 安装完成后,系统会自动配置环境变量,用户也可以手动修改这些变量以指向开发目录。
通过以上文档,用户可以顺利安装、使用和了解 OpenNI 项目。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660