DOODS 开源项目教程
1. 项目介绍
DOODS(Dedicated Open Object Detection Service)是一个用于图像中对象检测的GRPC/REST服务。它设计得非常易于使用,可以作为容器运行,并且可以远程访问。DOODS支持多种对象检测模型,包括TensorFlow Lite和Coral EdgeTPU模型。它还支持基本的预共享密钥认证和TLS加密(默认禁用)。
2. 项目快速启动
2.1 安装Docker
首先,确保你已经安装了Docker。如果没有安装,可以通过以下命令安装:
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io
2.2 运行DOODS容器
使用以下命令运行DOODS容器:
docker run -it -p 8080:8080 snowzach/doods:latest
2.3 配置模型
你可以通过映射模型文件和配置文件来更新模型:
docker run -it -v /models:/opt/doods/models -v /example.yaml:/opt/doods/config.yaml -p 8080:8080 snowzach/doods:latest
2.4 使用Coral EdgeTPU
如果你想在Docker中使用Coral EdgeTPU,需要将设备传递给容器:
docker run -it --device /dev/bus/usb -p 8080:8080 snowzach/doods:latest
3. 应用案例和最佳实践
3.1 实时监控系统
DOODS可以用于构建实时监控系统,通过摄像头捕捉图像并实时检测图像中的对象。例如,可以用于检测工厂中的异常行为或监控公共场所的安全。
3.2 智能家居
在智能家居系统中,DOODS可以用于检测家中的人员或宠物,并根据检测结果触发相应的自动化操作,如打开灯光或播放音乐。
3.3 自动驾驶
在自动驾驶领域,DOODS可以用于实时检测道路上的行人、车辆和其他障碍物,从而帮助车辆做出安全的驾驶决策。
4. 典型生态项目
4.1 TensorFlow Lite
TensorFlow Lite是Google推出的轻量级机器学习框架,特别适合在移动设备和嵌入式系统上运行。DOODS支持TensorFlow Lite模型,可以与TensorFlow生态系统无缝集成。
4.2 Coral EdgeTPU
Coral EdgeTPU是Google推出的边缘计算加速器,专为低延迟和高性能的机器学习推理设计。DOODS支持Coral EdgeTPU,可以在边缘设备上实现高效的对象检测。
4.3 Docker
Docker是一个开源的容器化平台,允许开发者将应用程序及其依赖打包到一个可移植的容器中。DOODS通过Docker容器化,使得部署和扩展变得更加简单和高效。
通过以上教程,你可以快速上手并深入了解DOODS项目,结合实际应用场景和生态项目,发挥其最大的潜力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00