DOODS 开源项目教程
1. 项目介绍
DOODS(Dedicated Open Object Detection Service)是一个用于图像中对象检测的GRPC/REST服务。它设计得非常易于使用,可以作为容器运行,并且可以远程访问。DOODS支持多种对象检测模型,包括TensorFlow Lite和Coral EdgeTPU模型。它还支持基本的预共享密钥认证和TLS加密(默认禁用)。
2. 项目快速启动
2.1 安装Docker
首先,确保你已经安装了Docker。如果没有安装,可以通过以下命令安装:
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io
2.2 运行DOODS容器
使用以下命令运行DOODS容器:
docker run -it -p 8080:8080 snowzach/doods:latest
2.3 配置模型
你可以通过映射模型文件和配置文件来更新模型:
docker run -it -v /models:/opt/doods/models -v /example.yaml:/opt/doods/config.yaml -p 8080:8080 snowzach/doods:latest
2.4 使用Coral EdgeTPU
如果你想在Docker中使用Coral EdgeTPU,需要将设备传递给容器:
docker run -it --device /dev/bus/usb -p 8080:8080 snowzach/doods:latest
3. 应用案例和最佳实践
3.1 实时监控系统
DOODS可以用于构建实时监控系统,通过摄像头捕捉图像并实时检测图像中的对象。例如,可以用于检测工厂中的异常行为或监控公共场所的安全。
3.2 智能家居
在智能家居系统中,DOODS可以用于检测家中的人员或宠物,并根据检测结果触发相应的自动化操作,如打开灯光或播放音乐。
3.3 自动驾驶
在自动驾驶领域,DOODS可以用于实时检测道路上的行人、车辆和其他障碍物,从而帮助车辆做出安全的驾驶决策。
4. 典型生态项目
4.1 TensorFlow Lite
TensorFlow Lite是Google推出的轻量级机器学习框架,特别适合在移动设备和嵌入式系统上运行。DOODS支持TensorFlow Lite模型,可以与TensorFlow生态系统无缝集成。
4.2 Coral EdgeTPU
Coral EdgeTPU是Google推出的边缘计算加速器,专为低延迟和高性能的机器学习推理设计。DOODS支持Coral EdgeTPU,可以在边缘设备上实现高效的对象检测。
4.3 Docker
Docker是一个开源的容器化平台,允许开发者将应用程序及其依赖打包到一个可移植的容器中。DOODS通过Docker容器化,使得部署和扩展变得更加简单和高效。
通过以上教程,你可以快速上手并深入了解DOODS项目,结合实际应用场景和生态项目,发挥其最大的潜力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00