使用Pandas将数据存储到SQL数据库的最佳实践
2025-06-04 03:11:51作者:庞眉杨Will
前言
在数据分析和处理过程中,我们经常需要将处理好的数据存储到数据库中以便后续使用。本文将详细介绍如何使用Pandas和SQLAlchemy将数据高效地存储到MySQL数据库中,这是数据工程中一个非常实用的技能。
准备工作
安装必要的库
首先需要安装两个Python库:
!pip3 install -U -q PyMySQL sqlalchemy
- PyMySQL:Python的MySQL客户端
- SQLAlchemy:Python的SQL工具包和对象关系映射(ORM)工具
导入必要的模块
import pandas as pd
from sqlalchemy import create_engine
数据准备阶段
下载示例数据
我们使用纽约市餐厅检查数据作为示例:
!curl 'https://data.cityofnewyork.us/api/views/43nn-pn8j/rows.csv?accessType=DOWNLOAD' -o restaurants.csv
读取和处理数据
# 读取CSV文件
df = pd.read_csv('restaurants.csv')
# 处理列名:替换空格为下划线并转为大写
cols = df.columns
cols = cols.map(lambda x: x.replace(' ', '_').upper())
df.columns = cols
# 数据类型转换
df["INSPECTION_DATE"] = pd.to_datetime(df["INSPECTION_DATE"], format="%m/%d/%Y")
df["SCORE"] = pd.to_numeric(df["SCORE"])
# 删除不需要的列
df = df.drop(['GRADE_DATE', 'RECORD_DATE', 'LOCATION_POINT1'], axis='columns')
数据库连接配置
创建数据库连接
import os
from sqlalchemy import create_engine, text
# 配置MySQL连接字符串
conn_string = 'mysql+pymysql://{user}:{password}@{host}:{port}/{db}?charset=utf8'.format(
user = 'student',
password = 'dwdstudent2015',
host = 'db.ipeirotis.org',
port = 3306,
encoding = 'utf-8',
db = 'public'
)
engine = create_engine(conn_string)
数据库表设计
确定字段长度
在创建表之前,我们需要确定文本字段的最大长度:
# 报告文本属性的最大长度
for c in df.columns.values:
if df.dtypes[c] == 'object':
print(c, df[c].str.len().max())
创建唯一表名
在多用户环境下,为避免表名冲突,可以添加随机后缀:
import uuid
if "suffix" not in globals():
suffix = str(uuid.uuid4())[:8]
print(suffix)
db_name = "public"
table_name = f"inspections_{suffix}"
创建表结构
# 删除已存在的表
drop_table_sql = f'''
DROP TABLE IF EXISTS {db_name}.{table_name};
'''
with engine.connect() as con:
con.execute(text(drop_table_sql))
# 创建新表
create_table_sql = f'''
CREATE TABLE IF NOT EXISTS {db_name}.{table_name} (
CAMIS CHAR(8),
DBA VARCHAR(100),
BUILDING VARCHAR(10),
STREET VARCHAR(40),
ZIPCODE CHAR(5),
BORO VARCHAR(15),
PHONE CHAR(12),
CUISINE_DESCRIPTION VARCHAR(30),
LATITUDE FLOAT,
LONGITUDE FLOAT,
COMMUNITY_BOARD CHAR(3),
COUNCIL_DISTRICT CHAR(2),
CENSUS_TRACT CHAR(6),
BIN CHAR(7),
BBL CHAR(10),
NTA CHAR(4),
INSPECTION_DATE DATETIME,
ACTION VARCHAR(130),
GRADE CHAR(1),
INSPECTION_TYPE VARCHAR(60),
VIOLATION_CODE VARCHAR(10),
VIOLATION_DESCRIPTION VARCHAR(1000),
CRITICAL_FLAG VARCHAR(15),
SCORE SMALLINT
) ENGINE=INNODB DEFAULT CHARSET=UTF8MB4;
'''
with engine.connect() as con:
con.execute(text(create_table_sql))
数据存储
使用to_sql方法存储数据
df.to_sql(name=table_name, # 表名
con=engine, # 数据库连接
if_exists='append', # 追加模式
index=False, # 不写入索引列
chunksize=1000 # 每次写入1000行
)
验证数据
# 从数据库查询数据验证
with engine.connect() as connection:
r = pd.read_sql(text(f"SELECT * FROM public.{table_name} LIMIT 100"), con=connection)
r.head(100)
最佳实践总结
- 数据类型处理:在将数据存储到数据库前,确保正确处理数据类型转换
- 列名规范化:统一列名格式(如大写、下划线分隔)可以提高代码可读性
- 表结构设计:手动设计表结构比自动推断更可靠
- 批量写入:使用chunksize参数可以提高大数据量的写入效率
- 多用户环境:使用随机后缀避免表名冲突
- 字符编码:明确指定UTF8MB4以支持完整的Unicode字符集
通过以上步骤,我们可以高效地将Pandas DataFrame中的数据存储到MySQL数据库,为后续的数据分析和应用提供可靠的数据源。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
621
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
791
77