使用Pandas将数据存储到SQL数据库的最佳实践
2025-06-04 22:51:53作者:庞眉杨Will
前言
在数据分析和处理过程中,我们经常需要将处理好的数据存储到数据库中以便后续使用。本文将详细介绍如何使用Pandas和SQLAlchemy将数据高效地存储到MySQL数据库中,这是数据工程中一个非常实用的技能。
准备工作
安装必要的库
首先需要安装两个Python库:
!pip3 install -U -q PyMySQL sqlalchemy
- PyMySQL:Python的MySQL客户端
- SQLAlchemy:Python的SQL工具包和对象关系映射(ORM)工具
导入必要的模块
import pandas as pd
from sqlalchemy import create_engine
数据准备阶段
下载示例数据
我们使用纽约市餐厅检查数据作为示例:
!curl 'https://data.cityofnewyork.us/api/views/43nn-pn8j/rows.csv?accessType=DOWNLOAD' -o restaurants.csv
读取和处理数据
# 读取CSV文件
df = pd.read_csv('restaurants.csv')
# 处理列名:替换空格为下划线并转为大写
cols = df.columns
cols = cols.map(lambda x: x.replace(' ', '_').upper())
df.columns = cols
# 数据类型转换
df["INSPECTION_DATE"] = pd.to_datetime(df["INSPECTION_DATE"], format="%m/%d/%Y")
df["SCORE"] = pd.to_numeric(df["SCORE"])
# 删除不需要的列
df = df.drop(['GRADE_DATE', 'RECORD_DATE', 'LOCATION_POINT1'], axis='columns')
数据库连接配置
创建数据库连接
import os
from sqlalchemy import create_engine, text
# 配置MySQL连接字符串
conn_string = 'mysql+pymysql://{user}:{password}@{host}:{port}/{db}?charset=utf8'.format(
user = 'student',
password = 'dwdstudent2015',
host = 'db.ipeirotis.org',
port = 3306,
encoding = 'utf-8',
db = 'public'
)
engine = create_engine(conn_string)
数据库表设计
确定字段长度
在创建表之前,我们需要确定文本字段的最大长度:
# 报告文本属性的最大长度
for c in df.columns.values:
if df.dtypes[c] == 'object':
print(c, df[c].str.len().max())
创建唯一表名
在多用户环境下,为避免表名冲突,可以添加随机后缀:
import uuid
if "suffix" not in globals():
suffix = str(uuid.uuid4())[:8]
print(suffix)
db_name = "public"
table_name = f"inspections_{suffix}"
创建表结构
# 删除已存在的表
drop_table_sql = f'''
DROP TABLE IF EXISTS {db_name}.{table_name};
'''
with engine.connect() as con:
con.execute(text(drop_table_sql))
# 创建新表
create_table_sql = f'''
CREATE TABLE IF NOT EXISTS {db_name}.{table_name} (
CAMIS CHAR(8),
DBA VARCHAR(100),
BUILDING VARCHAR(10),
STREET VARCHAR(40),
ZIPCODE CHAR(5),
BORO VARCHAR(15),
PHONE CHAR(12),
CUISINE_DESCRIPTION VARCHAR(30),
LATITUDE FLOAT,
LONGITUDE FLOAT,
COMMUNITY_BOARD CHAR(3),
COUNCIL_DISTRICT CHAR(2),
CENSUS_TRACT CHAR(6),
BIN CHAR(7),
BBL CHAR(10),
NTA CHAR(4),
INSPECTION_DATE DATETIME,
ACTION VARCHAR(130),
GRADE CHAR(1),
INSPECTION_TYPE VARCHAR(60),
VIOLATION_CODE VARCHAR(10),
VIOLATION_DESCRIPTION VARCHAR(1000),
CRITICAL_FLAG VARCHAR(15),
SCORE SMALLINT
) ENGINE=INNODB DEFAULT CHARSET=UTF8MB4;
'''
with engine.connect() as con:
con.execute(text(create_table_sql))
数据存储
使用to_sql方法存储数据
df.to_sql(name=table_name, # 表名
con=engine, # 数据库连接
if_exists='append', # 追加模式
index=False, # 不写入索引列
chunksize=1000 # 每次写入1000行
)
验证数据
# 从数据库查询数据验证
with engine.connect() as connection:
r = pd.read_sql(text(f"SELECT * FROM public.{table_name} LIMIT 100"), con=connection)
r.head(100)
最佳实践总结
- 数据类型处理:在将数据存储到数据库前,确保正确处理数据类型转换
- 列名规范化:统一列名格式(如大写、下划线分隔)可以提高代码可读性
- 表结构设计:手动设计表结构比自动推断更可靠
- 批量写入:使用chunksize参数可以提高大数据量的写入效率
- 多用户环境:使用随机后缀避免表名冲突
- 字符编码:明确指定UTF8MB4以支持完整的Unicode字符集
通过以上步骤,我们可以高效地将Pandas DataFrame中的数据存储到MySQL数据库,为后续的数据分析和应用提供可靠的数据源。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
51
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191