Griptape框架中的Schema驱动设计探讨
2025-07-03 21:57:00作者:董斯意
Griptape作为一个AI开发框架,其核心功能之一是对结构化输出的处理。近期社区中关于Schema驱动设计的讨论值得深入探讨,这关系到框架如何处理数据验证和结构化输出。
Schema驱动的基本概念
在Griptape框架中,Schema(模式)用于定义和验证数据的结构。当前实现主要依赖于Python的schema库,但开发者社区中有人更习惯使用Pydantic这类流行的数据验证库。
Schema驱动的核心思想是将Schema的生成和验证逻辑抽象出来,使其成为可插拔的组件。这种设计允许开发者根据项目需求选择不同的Schema实现,而不必受限于框架的默认选择。
当前实现方案
目前框架中的Schema处理是直接与schema库耦合的。以PromptTask为例,结构化输出验证直接使用schema.Schema:
PromptTask(
output_schema=schema.Schema({...})
)
在工具类中,Activity的配置也直接使用schema库:
@activity(
config={
"schema": Schema(
{
Literal("expression", description="..."): str,
}
)
}
)
提出的改进方向
社区讨论提出了两种可能的改进方案:
-
Schema驱动方案:将Schema处理抽象为可配置的驱动
PromptTask( output_schema_driver=SchemaSchemaDriver(), output_schema=schema.Schema({...}) ) -
统一使用Pydantic:考虑完全转向更流行的Pydantic库
技术权衡
在考虑Schema驱动设计时,有几个关键因素需要权衡:
- 灵活性:驱动设计提供了更大的灵活性,允许不同项目使用不同的Schema实现
- 复杂性:引入驱动层会增加框架的复杂性
- 性能:不同Schema库可能有性能差异
- 开发者体验:需要考虑大多数开发者的偏好和习惯
实施建议
基于讨论,可以采取分阶段实施策略:
- 首先扩展PromptTask直接支持output_schema参数
- 评估Pydantic的适用性和优势
- 后续再考虑引入完整的Schema驱动抽象
这种渐进式改进可以平衡框架演进和稳定性需求,同时给开发者提供更好的体验。对于大多数用例,统一的Schema实现可能比可插拔的驱动设计更为实用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869