深入理解Dirichlet过程:高斯聚类项目中的非参数贝叶斯方法
2025-07-04 15:09:07作者:乔或婵
引言
在机器学习领域,聚类分析是一个基础而重要的问题。传统的高斯混合模型(GMM)需要预先指定聚类数量,这在实际应用中往往是个难题。本项目探讨了一种更灵活的解决方案——Dirichlet过程(DP),它允许模型自动确定合适的聚类数量。
Dirichlet过程基础
Dirichlet过程是一种非参数贝叶斯方法,可以生成无限维的概率分布。通俗地说,它就像一个"无限餐厅":
- 顾客(数据点)可以坐在任何现有的桌子(聚类)上
- 也可以选择坐在新桌子上
- 新桌子被选择的概率与当前顾客数量有关
这种特性使得DP特别适合聚类数量未知的场景。
棒棒糖分解过程(Stick-breaking Process)
DP的实现通常采用棒棒糖分解这一直观方法:
- 想象一根长度为1的棒棒糖
- 每次从Beta分布中采样一个比例,折断棒棒糖
- 保留左边部分作为权重,右边继续分解
- 重复这个过程直到获得足够多的权重
数学表达式为: πₖ = βₖ ∏(1-βⱼ) (j=1 to k-1) 其中βₖ ~ Beta(1, α)
def stick_breaking_weights(beta_draws):
def weighting(carry, beta_i):
occupied_probability, history = carry
weight = beta_i * (1 - occupied_probability)
new_history = history + [weight]
new_occupied = occupied_probability + weight
return (new_occupied, new_history), None
final, _ = lax.scan(weighting, (0.0, []), beta_draws)
return final
浓度参数的影响
Dirichlet过程有一个关键参数α(浓度参数),它控制着:
- α越小:权重集中在少数几个分量上
- α越大:权重分布更均匀,使用更多分量
我们通过实验可视化这一现象:
concentrations = [0.5, 1, 3, 5, 10, 20]
fig, axes = plt.subplots(2, 3, figsize=(12, 8))
for ax, conc in zip(axes.flatten(), concentrations):
_, weights = dp_draw(key, conc, 50)
ax.plot(weights)
ax.set_title(f"α={conc}")
plt.tight_layout()
逆向过程与参数估计
在实际应用中,我们需要从观测数据中推断浓度参数。这需要:
- 从权重向量逆向计算Beta分布采样
- 评估这些采样在给定α下的似然
- 优化α使得似然最大
def component_probs_loglike(log_component_probs, log_concentration, num_components):
# 逆向计算Beta采样
beta_hat = beta_draw_from_weights(np.exp(log_component_probs))
# 计算对数似然
log_like = beta_logpdf(beta_hat, 1, np.exp(log_concentration))
return np.sum(log_like[:num_components])
实际应用建议
- 初始化选择:从α=1开始,观察权重分布
- 收敛判断:监控对数似然变化,通常20-30次迭代足够
- 数值稳定性:使用对数空间计算避免下溢
- 分量数量:实践中20-50个分量通常足够近似"无限"
结语
Dirichlet过程为高斯混合模型提供了强大的非参数扩展,解决了聚类数量不确定的难题。通过棒棒糖分解和逆向优化,我们能够灵活地建模复杂数据分布。这种方法在主题建模、图像分割等领域都有广泛应用。
理解DP的核心在于把握其"无限但稀疏"的特性——理论上可以有无穷多个分量,但实际上只有少数几个会被显著使用。这种优雅的平衡使其成为贝叶斯非参数统计中的瑰宝。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882