深入理解Dirichlet过程:高斯聚类项目中的非参数贝叶斯方法
2025-07-04 15:27:31作者:乔或婵
引言
在机器学习领域,聚类分析是一个基础而重要的问题。传统的高斯混合模型(GMM)需要预先指定聚类数量,这在实际应用中往往是个难题。本项目探讨了一种更灵活的解决方案——Dirichlet过程(DP),它允许模型自动确定合适的聚类数量。
Dirichlet过程基础
Dirichlet过程是一种非参数贝叶斯方法,可以生成无限维的概率分布。通俗地说,它就像一个"无限餐厅":
- 顾客(数据点)可以坐在任何现有的桌子(聚类)上
- 也可以选择坐在新桌子上
- 新桌子被选择的概率与当前顾客数量有关
这种特性使得DP特别适合聚类数量未知的场景。
棒棒糖分解过程(Stick-breaking Process)
DP的实现通常采用棒棒糖分解这一直观方法:
- 想象一根长度为1的棒棒糖
- 每次从Beta分布中采样一个比例,折断棒棒糖
- 保留左边部分作为权重,右边继续分解
- 重复这个过程直到获得足够多的权重
数学表达式为: πₖ = βₖ ∏(1-βⱼ) (j=1 to k-1) 其中βₖ ~ Beta(1, α)
def stick_breaking_weights(beta_draws):
def weighting(carry, beta_i):
occupied_probability, history = carry
weight = beta_i * (1 - occupied_probability)
new_history = history + [weight]
new_occupied = occupied_probability + weight
return (new_occupied, new_history), None
final, _ = lax.scan(weighting, (0.0, []), beta_draws)
return final
浓度参数的影响
Dirichlet过程有一个关键参数α(浓度参数),它控制着:
- α越小:权重集中在少数几个分量上
- α越大:权重分布更均匀,使用更多分量
我们通过实验可视化这一现象:
concentrations = [0.5, 1, 3, 5, 10, 20]
fig, axes = plt.subplots(2, 3, figsize=(12, 8))
for ax, conc in zip(axes.flatten(), concentrations):
_, weights = dp_draw(key, conc, 50)
ax.plot(weights)
ax.set_title(f"α={conc}")
plt.tight_layout()
逆向过程与参数估计
在实际应用中,我们需要从观测数据中推断浓度参数。这需要:
- 从权重向量逆向计算Beta分布采样
- 评估这些采样在给定α下的似然
- 优化α使得似然最大
def component_probs_loglike(log_component_probs, log_concentration, num_components):
# 逆向计算Beta采样
beta_hat = beta_draw_from_weights(np.exp(log_component_probs))
# 计算对数似然
log_like = beta_logpdf(beta_hat, 1, np.exp(log_concentration))
return np.sum(log_like[:num_components])
实际应用建议
- 初始化选择:从α=1开始,观察权重分布
- 收敛判断:监控对数似然变化,通常20-30次迭代足够
- 数值稳定性:使用对数空间计算避免下溢
- 分量数量:实践中20-50个分量通常足够近似"无限"
结语
Dirichlet过程为高斯混合模型提供了强大的非参数扩展,解决了聚类数量不确定的难题。通过棒棒糖分解和逆向优化,我们能够灵活地建模复杂数据分布。这种方法在主题建模、图像分割等领域都有广泛应用。
理解DP的核心在于把握其"无限但稀疏"的特性——理论上可以有无穷多个分量,但实际上只有少数几个会被显著使用。这种优雅的平衡使其成为贝叶斯非参数统计中的瑰宝。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
Jetson TX2开发板官方资源完全指南:从入门到精通 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8