优化Pandas AI中last_code_executed的可读性问题
2025-05-11 07:05:53作者:明树来
问题背景
在Pandas AI项目的实际使用中,开发者发现last_code_executed
属性经常会包含完整的样本数据字典,导致代码可读性降低。特别是在处理大型数据集时,这些冗长的数据字典会使调试和分析变得困难。
技术分析
last_code_executed
是Pandas AI中一个记录最后执行代码的属性,它继承自SmartDataframe类。默认情况下,这个属性会完整记录包括数据变量在内的所有执行代码。然而,在很多实际场景中,数据变量并不需要被包含在调试信息中。
解决方案
自定义SmartDataframe子类
通过继承SmartDataframe类并重写last_code_executed
属性,我们可以实现对输出内容的精确控制:
class CustomSmartDataframe(SmartDataframe):
@property
def last_code_executed(self):
code = super().last_code_executed
# 过滤掉数据变量声明部分
return '\n'.join(line for line in code.split('\n')
if not line.strip().startswith('data = '))
这种方法保留了核心执行逻辑,同时移除了不必要的数据变量声明,使输出更加简洁。
动态变量检测
更智能的做法是检测代码中实际使用的变量,只保留必要的部分:
class SmartDataframeOptimized(SmartDataframe):
@property
def last_code_executed(self):
code = super().last_code_executed
# 解析AST检测实际使用的变量
tree = ast.parse(code)
used_vars = detect_used_variables(tree) # 自定义变量检测函数
if 'data' not in used_vars:
code = remove_variable_declaration(code, 'data')
return code
这种方法需要更深入的分析,但能确保不会意外移除实际使用的变量。
实现建议
- 选择性记录:根据实际需求选择性地记录变量,而非全部数据
- 摘要显示:对于必须包含的数据变量,可以显示摘要而非完整内容
- 配置选项:提供配置参数让用户决定是否包含数据变量
最佳实践
在实际项目中,建议:
- 在开发调试阶段可以保留完整信息
- 在生产环境中使用精简版输出
- 为不同的使用场景创建不同的子类
这种优化不仅能提高代码可读性,还能减少不必要的内存占用和日志体积,特别适合处理大型数据集的场景。
通过以上方法,开发者可以更清晰地查看和分析Pandas AI的执行过程,提升开发效率和调试体验。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133