优化Pandas AI中last_code_executed的可读性问题
2025-05-11 08:11:15作者:明树来
问题背景
在Pandas AI项目的实际使用中,开发者发现last_code_executed属性经常会包含完整的样本数据字典,导致代码可读性降低。特别是在处理大型数据集时,这些冗长的数据字典会使调试和分析变得困难。
技术分析
last_code_executed是Pandas AI中一个记录最后执行代码的属性,它继承自SmartDataframe类。默认情况下,这个属性会完整记录包括数据变量在内的所有执行代码。然而,在很多实际场景中,数据变量并不需要被包含在调试信息中。
解决方案
自定义SmartDataframe子类
通过继承SmartDataframe类并重写last_code_executed属性,我们可以实现对输出内容的精确控制:
class CustomSmartDataframe(SmartDataframe):
@property
def last_code_executed(self):
code = super().last_code_executed
# 过滤掉数据变量声明部分
return '\n'.join(line for line in code.split('\n')
if not line.strip().startswith('data = '))
这种方法保留了核心执行逻辑,同时移除了不必要的数据变量声明,使输出更加简洁。
动态变量检测
更智能的做法是检测代码中实际使用的变量,只保留必要的部分:
class SmartDataframeOptimized(SmartDataframe):
@property
def last_code_executed(self):
code = super().last_code_executed
# 解析AST检测实际使用的变量
tree = ast.parse(code)
used_vars = detect_used_variables(tree) # 自定义变量检测函数
if 'data' not in used_vars:
code = remove_variable_declaration(code, 'data')
return code
这种方法需要更深入的分析,但能确保不会意外移除实际使用的变量。
实现建议
- 选择性记录:根据实际需求选择性地记录变量,而非全部数据
- 摘要显示:对于必须包含的数据变量,可以显示摘要而非完整内容
- 配置选项:提供配置参数让用户决定是否包含数据变量
最佳实践
在实际项目中,建议:
- 在开发调试阶段可以保留完整信息
- 在生产环境中使用精简版输出
- 为不同的使用场景创建不同的子类
这种优化不仅能提高代码可读性,还能减少不必要的内存占用和日志体积,特别适合处理大型数据集的场景。
通过以上方法,开发者可以更清晰地查看和分析Pandas AI的执行过程,提升开发效率和调试体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100