AWS Deep Learning Containers 发布 PyTorch Graviton 推理容器 v1.38 版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一系列预构建的深度学习容器镜像,这些镜像经过优化可以直接在AWS云平台上运行。这些容器集成了主流深度学习框架(如PyTorch、TensorFlow等)及其依赖项,使开发者能够快速部署深度学习应用而无需花费大量时间配置环境。
本次发布的v1.38版本专注于为基于Graviton处理器的ARM架构提供优化的PyTorch推理容器。Graviton是AWS自主研发的基于ARM架构的处理器,相比传统x86架构处理器,在性价比和能效比方面具有显著优势。这个新版本特别针对使用PyTorch 2.3.0框架进行模型推理的场景进行了优化。
关键特性与技术细节
该容器镜像基于Ubuntu 20.04操作系统构建,预装了Python 3.11环境,主要包含以下核心组件:
-
PyTorch生态系统:
- PyTorch 2.3.0(CPU版本)
- TorchVision 0.18.0
- TorchAudio 2.3.0
- TorchServe 0.11.0(模型服务框架)
- Torch Model Archiver 0.11.0(模型打包工具)
-
科学计算与数据处理:
- NumPy 1.26.4
- Pandas 2.2.2
- SciPy 1.14.0
- scikit-learn 1.5.0
- OpenCV 4.10.0.84
-
AWS工具集成:
- AWS CLI 1.33.19
- Boto3 1.34.137
- Botocore 1.34.137
- SageMaker PyTorch Inference 2.0.24
-
构建工具与依赖:
- Cython 3.0.10
- Ninja 1.11.1.1
- GCC相关库(针对ARM64架构优化)
技术优势与应用场景
这个容器镜像特别适合以下应用场景:
-
成本敏感的推理服务:Graviton处理器相比传统x86实例可节省高达40%的成本,特别适合大规模部署的推理服务。
-
边缘计算场景:ARM架构在能效比方面的优势使其成为边缘设备的理想选择,这个容器可以轻松部署到基于Graviton的边缘设备上。
-
SageMaker服务集成:预装了SageMaker PyTorch Inference工具包,可以无缝集成到AWS SageMaker服务中,简化模型部署流程。
-
计算机视觉应用:内置OpenCV和TorchVision库,为图像处理任务提供了完整的工具链。
版本管理与兼容性
该容器镜像提供了多个标签以满足不同用户的需求:
- 长期支持标签(如2.3-cpu-py311)
- 精确版本标签(如2.3.0-cpu-py311-ubuntu20.04-sagemaker)
- 时间戳标签(用于特定版本追踪)
这种灵活的标签策略既保证了生产环境的稳定性,又满足了开发测试环境对特定版本的需求。
总结
AWS Deep Learning Containers的这次更新为使用PyTorch框架的开发者提供了针对Graviton处理器的优化解决方案。通过预构建的容器镜像,开发者可以快速部署高效的推理服务,同时享受ARM架构带来的成本优势。特别是对于已经在使用AWS SageMaker服务的团队,这个容器可以显著简化模型部署流程,提高开发效率。
对于考虑从x86架构迁移到Graviton的用户,建议先进行性能基准测试,虽然Graviton在大多数场景下表现优异,但特定工作负载可能需要额外优化。AWS提供了完善的工具链和文档支持这类迁移工作。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00