Kubeflow Training Operator 中 Volcano 调度器集成与队列优先级支持
Kubeflow Training Operator 作为 Kubernetes 上运行机器学习训练工作负载的关键组件,其调度能力直接影响着集群资源的利用效率。本文深入探讨了该组件与 Volcano 调度器的集成机制,以及如何为训练任务配置队列和优先级。
调度器集成架构
Kubeflow Training Operator 通过 RunPolicy 结构体中的 SchedulingPolicy 字段支持与多种调度系统的集成。对于 Volcano 调度器,需要在 Operator 的启动参数中明确指定 --gang-scheduler-name=volcano 参数,这种设计源于 Volcano 作为独立调度器需要特殊处理 Pod 组调度的情况。
队列与优先级配置
在训练任务规范中,可以通过 SchedulingPolicy 配置以下关键参数:
- queue:指定任务提交到的队列名称
- priorityClassName:设置任务优先级类
- minResources:定义任务所需最小资源
- scheduleTimeoutSeconds:设置调度超时时间
这些配置通过 Volcano 调度器实现高级调度功能,如资源预留、任务抢占和公平调度等。
与 Kueue 集成的对比
值得注意的是,Kubeflow Training Operator 对 Kueue 的支持采用了不同的集成方式。Kueue 作为作业队列管理系统而非调度器,仅需通过简单的标签(如 kueue.x-k8s.io/queue-name)即可实现队列管理,无需修改 Operator 配置。这种差异源于两者在 Kubernetes 生态中的不同定位:Volcano 是完整的调度器替代方案,而 Kueue 是构建在默认调度器之上的队列管理层。
未来发展
社区正在推进调度框架的统一化工作,计划通过 #2437 等改进实现更一致的调度接口。这将简化用户配置,同时保持对不同调度后端的兼容性。未来版本可能会引入更灵活的调度策略配置方式,降低用户的学习曲线。
对于需要高级调度功能的用户,建议关注项目更新,及时了解调度集成方面的改进。当前版本中,Volcano 调度器仍然是实现复杂调度策略(如 Gang Scheduling、公平队列等)的最佳选择。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01