Kubeflow Training Operator 中 Volcano 调度器集成与队列优先级支持
Kubeflow Training Operator 作为 Kubernetes 上运行机器学习训练工作负载的关键组件,其调度能力直接影响着集群资源的利用效率。本文深入探讨了该组件与 Volcano 调度器的集成机制,以及如何为训练任务配置队列和优先级。
调度器集成架构
Kubeflow Training Operator 通过 RunPolicy 结构体中的 SchedulingPolicy 字段支持与多种调度系统的集成。对于 Volcano 调度器,需要在 Operator 的启动参数中明确指定 --gang-scheduler-name=volcano 参数,这种设计源于 Volcano 作为独立调度器需要特殊处理 Pod 组调度的情况。
队列与优先级配置
在训练任务规范中,可以通过 SchedulingPolicy 配置以下关键参数:
- queue:指定任务提交到的队列名称
- priorityClassName:设置任务优先级类
- minResources:定义任务所需最小资源
- scheduleTimeoutSeconds:设置调度超时时间
这些配置通过 Volcano 调度器实现高级调度功能,如资源预留、任务抢占和公平调度等。
与 Kueue 集成的对比
值得注意的是,Kubeflow Training Operator 对 Kueue 的支持采用了不同的集成方式。Kueue 作为作业队列管理系统而非调度器,仅需通过简单的标签(如 kueue.x-k8s.io/queue-name)即可实现队列管理,无需修改 Operator 配置。这种差异源于两者在 Kubernetes 生态中的不同定位:Volcano 是完整的调度器替代方案,而 Kueue 是构建在默认调度器之上的队列管理层。
未来发展
社区正在推进调度框架的统一化工作,计划通过 #2437 等改进实现更一致的调度接口。这将简化用户配置,同时保持对不同调度后端的兼容性。未来版本可能会引入更灵活的调度策略配置方式,降低用户的学习曲线。
对于需要高级调度功能的用户,建议关注项目更新,及时了解调度集成方面的改进。当前版本中,Volcano 调度器仍然是实现复杂调度策略(如 Gang Scheduling、公平队列等)的最佳选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00