Kubeflow Training Operator 中 Volcano 调度器集成与队列优先级支持
Kubeflow Training Operator 作为 Kubernetes 上运行机器学习训练工作负载的关键组件,其调度能力直接影响着集群资源的利用效率。本文深入探讨了该组件与 Volcano 调度器的集成机制,以及如何为训练任务配置队列和优先级。
调度器集成架构
Kubeflow Training Operator 通过 RunPolicy 结构体中的 SchedulingPolicy 字段支持与多种调度系统的集成。对于 Volcano 调度器,需要在 Operator 的启动参数中明确指定 --gang-scheduler-name=volcano 参数,这种设计源于 Volcano 作为独立调度器需要特殊处理 Pod 组调度的情况。
队列与优先级配置
在训练任务规范中,可以通过 SchedulingPolicy 配置以下关键参数:
- queue:指定任务提交到的队列名称
- priorityClassName:设置任务优先级类
- minResources:定义任务所需最小资源
- scheduleTimeoutSeconds:设置调度超时时间
这些配置通过 Volcano 调度器实现高级调度功能,如资源预留、任务抢占和公平调度等。
与 Kueue 集成的对比
值得注意的是,Kubeflow Training Operator 对 Kueue 的支持采用了不同的集成方式。Kueue 作为作业队列管理系统而非调度器,仅需通过简单的标签(如 kueue.x-k8s.io/queue-name)即可实现队列管理,无需修改 Operator 配置。这种差异源于两者在 Kubernetes 生态中的不同定位:Volcano 是完整的调度器替代方案,而 Kueue 是构建在默认调度器之上的队列管理层。
未来发展
社区正在推进调度框架的统一化工作,计划通过 #2437 等改进实现更一致的调度接口。这将简化用户配置,同时保持对不同调度后端的兼容性。未来版本可能会引入更灵活的调度策略配置方式,降低用户的学习曲线。
对于需要高级调度功能的用户,建议关注项目更新,及时了解调度集成方面的改进。当前版本中,Volcano 调度器仍然是实现复杂调度策略(如 Gang Scheduling、公平队列等)的最佳选择。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00