Jellyseerr与自签名证书问题的解决方案
问题背景
在使用Jellyseerr管理Radarr和Sonarr服务时,当这些服务启用了SSL加密并使用内部CA签名的证书时,Jellyseerr会出现无法获取配置文件的问题。具体表现为在Jellyseerr中配置服务使用SSL端口后,系统日志中会出现"Failed to retrieve profiles: fetch failed"的错误提示。
问题分析
这个问题源于Node.js运行环境对SSL证书的验证机制。当使用内部CA签名的证书时,虽然操作系统层面已经安装了完整的CA证书链(包括根证书和中间签名CA证书),但Node.js默认不会自动使用系统的证书存储。这就导致了:
- 通过命令行工具如openssl可以成功建立SSL连接
- 但Node.js应用程序(如Jellyseerr)却无法验证证书的有效性
- 最终导致HTTPS请求失败
解决方案
要解决这个问题,需要通过环境变量显式地告诉Node.js额外的CA证书位置。具体步骤如下:
- 确保你的CA证书文件已经放置在系统的证书目录中,通常为
/usr/local/share/ca-certificates/ - 修改Jellyseerr的服务配置文件,添加环境变量配置
- 指定
NODE_EXTRA_CA_CERTS环境变量指向你的CA证书文件
详细操作步骤
-
确认CA证书位置: 首先确认你的CA证书文件已经正确安装到系统证书目录,例如:
/usr/local/share/ca-certificates/my-ca.crt -
修改服务配置: 编辑Jellyseerr的systemd服务文件(通常位于
/etc/systemd/system/jellyseerr.service),在[Service]部分添加以下内容:Environment=NODE_EXTRA_CA_CERTS=/usr/local/share/ca-certificates/my-ca.crt -
重载并重启服务:
sudo systemctl daemon-reload sudo systemctl restart jellyseerr
技术原理
这个解决方案利用了Node.js提供的NODE_EXTRA_CA_CERTS环境变量机制。该变量允许开发者指定额外的CA证书文件路径,Node.js运行时会将这个证书文件中的CA证书添加到它内部的信任存储中。这样,当Jellyseerr(基于Node.js)尝试与配置了自签名证书的Radarr/Sonarr建立HTTPS连接时,就能正确验证服务器证书的有效性。
注意事项
- 确保指定的证书文件路径正确无误
- 证书文件需要包含完整的证书链(如果适用)
- 修改服务配置后必须重载systemd并重启服务
- 如果使用容器化部署,需要确保证书文件在容器内也可访问
总结
通过配置NODE_EXTRA_CA_CERTS环境变量,我们成功解决了Jellyseerr在使用内部CA签名的SSL证书时无法连接Radarr/Sonarr的问题。这个解决方案不仅适用于Jellyseerr,对于其他基于Node.js的应用程序遇到类似证书验证问题时也同样有效。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00