Jellyseerr与自签名证书问题的解决方案
问题背景
在使用Jellyseerr管理Radarr和Sonarr服务时,当这些服务启用了SSL加密并使用内部CA签名的证书时,Jellyseerr会出现无法获取配置文件的问题。具体表现为在Jellyseerr中配置服务使用SSL端口后,系统日志中会出现"Failed to retrieve profiles: fetch failed"的错误提示。
问题分析
这个问题源于Node.js运行环境对SSL证书的验证机制。当使用内部CA签名的证书时,虽然操作系统层面已经安装了完整的CA证书链(包括根证书和中间签名CA证书),但Node.js默认不会自动使用系统的证书存储。这就导致了:
- 通过命令行工具如openssl可以成功建立SSL连接
- 但Node.js应用程序(如Jellyseerr)却无法验证证书的有效性
- 最终导致HTTPS请求失败
解决方案
要解决这个问题,需要通过环境变量显式地告诉Node.js额外的CA证书位置。具体步骤如下:
- 确保你的CA证书文件已经放置在系统的证书目录中,通常为
/usr/local/share/ca-certificates/ - 修改Jellyseerr的服务配置文件,添加环境变量配置
- 指定
NODE_EXTRA_CA_CERTS环境变量指向你的CA证书文件
详细操作步骤
-
确认CA证书位置: 首先确认你的CA证书文件已经正确安装到系统证书目录,例如:
/usr/local/share/ca-certificates/my-ca.crt -
修改服务配置: 编辑Jellyseerr的systemd服务文件(通常位于
/etc/systemd/system/jellyseerr.service),在[Service]部分添加以下内容:Environment=NODE_EXTRA_CA_CERTS=/usr/local/share/ca-certificates/my-ca.crt -
重载并重启服务:
sudo systemctl daemon-reload sudo systemctl restart jellyseerr
技术原理
这个解决方案利用了Node.js提供的NODE_EXTRA_CA_CERTS环境变量机制。该变量允许开发者指定额外的CA证书文件路径,Node.js运行时会将这个证书文件中的CA证书添加到它内部的信任存储中。这样,当Jellyseerr(基于Node.js)尝试与配置了自签名证书的Radarr/Sonarr建立HTTPS连接时,就能正确验证服务器证书的有效性。
注意事项
- 确保指定的证书文件路径正确无误
- 证书文件需要包含完整的证书链(如果适用)
- 修改服务配置后必须重载systemd并重启服务
- 如果使用容器化部署,需要确保证书文件在容器内也可访问
总结
通过配置NODE_EXTRA_CA_CERTS环境变量,我们成功解决了Jellyseerr在使用内部CA签名的SSL证书时无法连接Radarr/Sonarr的问题。这个解决方案不仅适用于Jellyseerr,对于其他基于Node.js的应用程序遇到类似证书验证问题时也同样有效。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00