Jellyseerr与自签名证书问题的解决方案
问题背景
在使用Jellyseerr管理Radarr和Sonarr服务时,当这些服务启用了SSL加密并使用内部CA签名的证书时,Jellyseerr会出现无法获取配置文件的问题。具体表现为在Jellyseerr中配置服务使用SSL端口后,系统日志中会出现"Failed to retrieve profiles: fetch failed"的错误提示。
问题分析
这个问题源于Node.js运行环境对SSL证书的验证机制。当使用内部CA签名的证书时,虽然操作系统层面已经安装了完整的CA证书链(包括根证书和中间签名CA证书),但Node.js默认不会自动使用系统的证书存储。这就导致了:
- 通过命令行工具如openssl可以成功建立SSL连接
- 但Node.js应用程序(如Jellyseerr)却无法验证证书的有效性
- 最终导致HTTPS请求失败
解决方案
要解决这个问题,需要通过环境变量显式地告诉Node.js额外的CA证书位置。具体步骤如下:
- 确保你的CA证书文件已经放置在系统的证书目录中,通常为
/usr/local/share/ca-certificates/
- 修改Jellyseerr的服务配置文件,添加环境变量配置
- 指定
NODE_EXTRA_CA_CERTS
环境变量指向你的CA证书文件
详细操作步骤
-
确认CA证书位置: 首先确认你的CA证书文件已经正确安装到系统证书目录,例如:
/usr/local/share/ca-certificates/my-ca.crt
-
修改服务配置: 编辑Jellyseerr的systemd服务文件(通常位于
/etc/systemd/system/jellyseerr.service
),在[Service]
部分添加以下内容:Environment=NODE_EXTRA_CA_CERTS=/usr/local/share/ca-certificates/my-ca.crt
-
重载并重启服务:
sudo systemctl daemon-reload sudo systemctl restart jellyseerr
技术原理
这个解决方案利用了Node.js提供的NODE_EXTRA_CA_CERTS
环境变量机制。该变量允许开发者指定额外的CA证书文件路径,Node.js运行时会将这个证书文件中的CA证书添加到它内部的信任存储中。这样,当Jellyseerr(基于Node.js)尝试与配置了自签名证书的Radarr/Sonarr建立HTTPS连接时,就能正确验证服务器证书的有效性。
注意事项
- 确保指定的证书文件路径正确无误
- 证书文件需要包含完整的证书链(如果适用)
- 修改服务配置后必须重载systemd并重启服务
- 如果使用容器化部署,需要确保证书文件在容器内也可访问
总结
通过配置NODE_EXTRA_CA_CERTS
环境变量,我们成功解决了Jellyseerr在使用内部CA签名的SSL证书时无法连接Radarr/Sonarr的问题。这个解决方案不仅适用于Jellyseerr,对于其他基于Node.js的应用程序遇到类似证书验证问题时也同样有效。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









