探索与学习:Ecole——强化学习在组合优化中的新乐园
2024-05-22 10:37:37作者:贡沫苏Truman
1、项目介绍
Ecole是一个为强化学习(RL)设计的创新环境,专注于组合优化问题的学习与探索。它的全称是"Extensible Combinatorial Optimization Learning Environments",意即可扩展的组合优化学习环境。这个项目将复杂的混合整数线性规划(MILP)求解器转变为可控的马尔科夫决策过程(MDP),提供了一个类似主流RL平台的API,方便开发者进行实验。
2、项目技术分析
Ecole的核心是强大的SCIP求解器,它作为内核处理实际的优化任务。通过Ecole,你可以创建一个基于分支策略的环境,并定义自定义奖励函数和观察函数,以适应不同的学习目标。它的代码结构清晰,易于理解和扩展,且支持通过conda或pip安装,对于源码编译,也提供了详尽的指南。
import ecole
env = ecole.environment.Branching(
reward_function=-1.5 * ecole.reward.LpIterations() ** 2,
observation_function=ecole.observation.NodeBipartite(),
)
instances = ecole.instance.SetCoverGenerator()
for _ in range(10):
obs, action_set, reward_offset, done, info = env.reset(next(instances))
while not done:
obs, action_set, reward, done, info = env.step(action_set[0])
这段简单的示例展示了如何设置环境并执行一个循环,你可以自由地定制你的学习过程。
3、项目及技术应用场景
Ecole适用于以下场景:
- 算法研究:研究RL如何影响MILP求解器的行为,寻找优化策略。
- 教学工具:教育下一代数据科学家和人工智能工程师关于组合优化和RL的基本概念。
- 工业应用:在物流、调度等实际问题中,利用RL改进现有的优化解决方案。
4、项目特点
- 易用性:Ecole模仿主流RL平台接口,让已熟悉相关工具的开发者能够快速上手。
- 灵活性:允许用户定义自定义奖励函数和观察模型,适应不同学习任务。
- 扩展性强:基于SCIP的强大求解器,可以处理各种复杂优化问题。
- 社区支持:提供详细的文档和代码托管平台讨论区,便于交流和求助。
如果你对强化学习与组合优化的交叉领域感兴趣,Ecole无疑是一个值得尝试的优秀平台。立即加入,开启你的优化学习之旅吧!
引用信息
如果在科研工作中使用了Ecole,请参考以下文献:
@inproceedings{
prouvost2020ecole,
title={Ecole: A Gym-like Library for Machine Learning in Combinatorial Optimization Solvers},
author={Antoine Prouvost and Justin Dumouchelle and Lara Scavuzzo and Maxime Gasse and Didier Chételat and Andrea Lodi},
booktitle={Learning Meets Combinatorial Algorithms at NeurIPS2020},
year={2020},
url={https://openreview.net/forum?id=IVc9hqgibyB}
}
现在就前往代码托管平台获取最新版本的Ecole,并查看完整的用户文档,开始你的优化学习之旅吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248