探索高效能计算:NNIE-lite,让NNIE如ncnn一样简单
2024-06-01 21:05:43作者:滑思眉Philip
在人工智能与物联网领域,低延迟、高效率的模型推理至关重要。海思的NNIE(Neural Network Inference Engine)是一个强大的硬件单元,专为神经网络加速设计。而今天,我们向您推荐一个创新项目——NNIE-lite。这个项目旨在简化NNIE的使用过程,使得算法工程师能够更加专注于模型性能和响应时间,而不必深入底层细节。
项目介绍
NNIE-lite是一个基于CMake构建的项目,特别针对Hi3516CV500和Hi3519AV100芯片优化,利用C++和OpenCV进行了NNIE的重构,提供了一种直观易用的方式部署模型。项目附带了清晰的示例,包括通用分类和分割任务,比如MNIST和ENet,并且支持LeNet 5和ENet等模型。
项目技术分析
该项目通过模板化的模型转换工具,将如Caffe_ENet这样的模型轻松转化为适用于NNIE的格式。在交叉编译环境下,使用arm-himix200-linux工具链,你可以轻松地在目标平台上运行这些模型。
此外,为了方便调试,NNIE-lite还允许直接在摄像头中运行ENet模型并实时生成彩色遮罩,提供了直观的视觉反馈。
应用场景
NNIE-lite非常适合需要在边缘设备上实现低延迟模型推理的应用,例如:
- 实时图像分类:用于智能监控系统,识别画面中的物体。
- 城市环境下的实时语义分割:可用于交通管理,自动识别车辆、行人和道路设施。
- 物体检测:在智能制造或零售环境中,可以进行商品识别或安全监控。
项目特点
- 简洁易用:通过CMake管理,使得项目结构清晰,易于理解和扩展。
- 平台兼容:专注于Hi3516CV500和Hi3519AV100芯片,实现快速部署。
- 跨平台开发:利用arm-himix200-linux进行交叉编译,适应不同的开发环境。
- 广泛支持的模型:涵盖从经典到现代的多种神经网络模型,如LeNet 5和ENet,未来还将支持更多对象检测模型。
为了更深入了解NNIE-lite的使用方法和环境搭建,请参考相关博客链接,其中详细介绍了模型转换环境的配置以及OpenCV的交叉编译过程。
总之,NNIE-lite是一款将复杂变为简单的优秀工具,它让开发者能够专注于他们的核心业务,而无需在硬件加速器的底层实现上花费过多精力。如果你正在寻找一种高效的方式来在海思芯片上运行深度学习模型,那么NNIE-lite无疑是你的理想选择。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
0