TensorRT 10.2中缓冲区分配方法的演进与替代方案
2025-05-20 10:32:24作者:裴麒琰
背景介绍
TensorRT作为NVIDIA推出的高性能深度学习推理优化器和运行时引擎,在版本迭代过程中不断优化其API设计。从8.X版本升级到10.2版本后,一些原有的API接口发生了变化,特别是与缓冲区分配相关的几个关键方法。
旧版本中的缓冲区分配方法
在TensorRT 8.X版本中,开发者通常使用以下三个核心方法来为引擎分配缓冲区:
get_binding_shape(binding)
- 获取绑定的张量形状get_binding_dtype(binding)
- 获取绑定的数据类型binding_is_input(binding)
- 判断绑定是否为输入
这些方法在构建推理管道时非常有用,特别是在分配主机和设备内存缓冲区时。
TensorRT 10.2中的API变化
在TensorRT 10.2中,上述方法已被移除,取而代之的是更现代的API设计。主要变化包括:
- 形状信息现在通过
get_tensor_shape
方法获取 - 数据类型通过
get_tensor_dtype
方法获取 - 输入/输出判断通过检查张量位置或使用
get_tensor_mode
方法实现
新版本中的缓冲区分配实现
在TensorRT 10.2中,缓冲区分配的推荐实现方式如下:
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for i in range(engine.num_bindings):
# 获取张量名称
binding_name = engine.get_tensor_name(i)
# 获取形状信息
shape = engine.get_tensor_shape(binding_name)
# 获取数据类型
dtype = trt.nptype(engine.get_tensor_dtype(binding_name))
# 计算缓冲区大小
size = trt.volume(shape) * engine.max_batch_size
# 分配主机和设备内存
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# 添加到绑定列表
bindings.append(int(device_mem))
# 判断输入/输出
if engine.get_tensor_mode(binding_name) == trt.TensorIOMode.INPUT:
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
关键变化点解析
-
绑定索引到张量名称的转变:新API更强调使用张量名称而非简单的绑定索引,这提高了代码的可读性和可维护性。
-
显式的张量模式查询:
get_tensor_mode
方法提供了更清晰的方式来区分输入和输出张量。 -
更一致的API命名:所有与张量相关的方法现在都使用"tensor"前缀,保持了API的一致性。
迁移建议
对于从旧版本迁移到TensorRT 10.2的开发者,建议:
- 全面审查所有使用旧API的代码段
- 使用新的张量中心API重写缓冲区分配逻辑
- 利用TensorRT的文档和示例代码作为参考
- 测试新实现以确保功能一致性和性能表现
总结
TensorRT 10.2通过引入更清晰、更一致的API设计,改进了缓冲区分配的编程体验。虽然这需要现有代码进行一定程度的修改,但新的API设计更加直观和易于维护,长期来看将提高开发效率和代码质量。开发者应理解这些变化的背后逻辑,并按照新的API规范更新他们的实现。
登录后查看全文
热门项目推荐
相关项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
505
42

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
194
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
333
11

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70