TensorRT 10.2中缓冲区分配方法的演进与替代方案
2025-05-20 20:49:55作者:裴麒琰
背景介绍
TensorRT作为NVIDIA推出的高性能深度学习推理优化器和运行时引擎,在版本迭代过程中不断优化其API设计。从8.X版本升级到10.2版本后,一些原有的API接口发生了变化,特别是与缓冲区分配相关的几个关键方法。
旧版本中的缓冲区分配方法
在TensorRT 8.X版本中,开发者通常使用以下三个核心方法来为引擎分配缓冲区:
get_binding_shape(binding)- 获取绑定的张量形状get_binding_dtype(binding)- 获取绑定的数据类型binding_is_input(binding)- 判断绑定是否为输入
这些方法在构建推理管道时非常有用,特别是在分配主机和设备内存缓冲区时。
TensorRT 10.2中的API变化
在TensorRT 10.2中,上述方法已被移除,取而代之的是更现代的API设计。主要变化包括:
- 形状信息现在通过
get_tensor_shape方法获取 - 数据类型通过
get_tensor_dtype方法获取 - 输入/输出判断通过检查张量位置或使用
get_tensor_mode方法实现
新版本中的缓冲区分配实现
在TensorRT 10.2中,缓冲区分配的推荐实现方式如下:
def allocate_buffers(engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for i in range(engine.num_bindings):
# 获取张量名称
binding_name = engine.get_tensor_name(i)
# 获取形状信息
shape = engine.get_tensor_shape(binding_name)
# 获取数据类型
dtype = trt.nptype(engine.get_tensor_dtype(binding_name))
# 计算缓冲区大小
size = trt.volume(shape) * engine.max_batch_size
# 分配主机和设备内存
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# 添加到绑定列表
bindings.append(int(device_mem))
# 判断输入/输出
if engine.get_tensor_mode(binding_name) == trt.TensorIOMode.INPUT:
inputs.append(HostDeviceMem(host_mem, device_mem))
else:
outputs.append(HostDeviceMem(host_mem, device_mem))
return inputs, outputs, bindings, stream
关键变化点解析
-
绑定索引到张量名称的转变:新API更强调使用张量名称而非简单的绑定索引,这提高了代码的可读性和可维护性。
-
显式的张量模式查询:
get_tensor_mode方法提供了更清晰的方式来区分输入和输出张量。 -
更一致的API命名:所有与张量相关的方法现在都使用"tensor"前缀,保持了API的一致性。
迁移建议
对于从旧版本迁移到TensorRT 10.2的开发者,建议:
- 全面审查所有使用旧API的代码段
- 使用新的张量中心API重写缓冲区分配逻辑
- 利用TensorRT的文档和示例代码作为参考
- 测试新实现以确保功能一致性和性能表现
总结
TensorRT 10.2通过引入更清晰、更一致的API设计,改进了缓冲区分配的编程体验。虽然这需要现有代码进行一定程度的修改,但新的API设计更加直观和易于维护,长期来看将提高开发效率和代码质量。开发者应理解这些变化的背后逻辑,并按照新的API规范更新他们的实现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19