Brushfire 开源项目教程
1. 项目介绍
Brushfire 是一个使用 Scala 编写的分布式监督学习框架,用于决策树集成模型的训练。其基本方法受到 Google 的 PLANET 的启发,但由于 Scala 的类型参数化和 Algebird 的聚合抽象,得到了极大的泛化。Brushfire 目前支持二分类和多分类分类器,数字特征(离散和连续),分类特征(包括具有非常高基数的特征),k 折交叉验证和随机森林,以及基于卡方检验的分裂质量度量,特征重要性和 Brier 分数等。
2. 项目快速启动
要快速启动 Brushfire,您需要首先构建项目,然后运行示例脚本。
首先,确保您已经安装了 sbt(Scala Build Tool)。然后,执行以下命令来构建 Brushfire 的 Scalding 模块:
sbt brushfireScalding/assembly
接下来,进入示例目录并运行 iris 示例脚本:
cd example
./iris
最后,查看结果:
cat iris.output/step_03
如果一切顺利,您应该会看到四个用于分类 irises 的决策树的 JSON 表示。
3. 应用案例和最佳实践
3.1 使用 Brushfire 进行分布式计算
Brushfire 当前支持使用 Scalding/Hadoop 作为分布式计算平台。以下是一个简单的例子,展示如何通过继承 TrainerJob 并覆盖 trainer 方法来使用 Brushfire。
import com.stripe.brushfire._
import com.stripe.brushfire.scalding._
import com.twitter.scalding._
class MyJob(args: Args) extends TrainerJob(args) {
import JsonInjections._
def trainingData: TypedPipe[Instance[K, V, T]] = ???
def trainer = Trainer(trainingData, KFoldSampler(4)).expandTimes(args("output"), 5)
}
您需要提供一个 trainingData 的实例,这是一个包含 Instance 对象的 TypedPipe。Instance 对象包含唯一标识符、时间戳、特征映射和目标值。
3.2 特征和目标类型
Brushfire 支持多种特征和目标类型。对于特征,推荐使用 Dispatched[Int, String, Double, String],这样可以匹配四种不同的特征值类型:Ordinal(有序数值),Nominal(命名分类),Continuous(连续数值)和 Sparse(稀疏分类)。
对于目标值,目前内置的支持仅限于 Map[L, Long] 类型,其中 L 代表标签类型(例如,二分类中的 Boolean 或多分类中的 String),而 Long 值代表实例的权重,通常为 1。
3.3 扩展小节点
在分布式算法扩展到足够深度后,您可能希望通过调用 expandSmallNodes 方法对任何足够小的节点进行进一步的内存中扩展。
val implicit stopper = FrequencyStopper(10000, 10)
trainer.expandInMemory(args("output") + "/mem", 100)
请注意,分布式算法会在内存中算法希望停止的相同实例计数处停止扩展。
4. 典型生态项目
目前 Brushfire 支持的分布式计算平台主要是 Scalding/Hadoop。但是,未来的计划中包括支持回归树、CHAID 类型的多路分裂、基于错误的剪枝,以及更多评估分裂和树的方法,同时也会支持 Spark 和单节点内存平台。
以上就是 Brushfire 的开源项目教程,希望对您有所帮助。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00