Brushfire 开源项目教程
1. 项目介绍
Brushfire 是一个使用 Scala 编写的分布式监督学习框架,用于决策树集成模型的训练。其基本方法受到 Google 的 PLANET 的启发,但由于 Scala 的类型参数化和 Algebird 的聚合抽象,得到了极大的泛化。Brushfire 目前支持二分类和多分类分类器,数字特征(离散和连续),分类特征(包括具有非常高基数的特征),k 折交叉验证和随机森林,以及基于卡方检验的分裂质量度量,特征重要性和 Brier 分数等。
2. 项目快速启动
要快速启动 Brushfire,您需要首先构建项目,然后运行示例脚本。
首先,确保您已经安装了 sbt(Scala Build Tool)。然后,执行以下命令来构建 Brushfire 的 Scalding 模块:
sbt brushfireScalding/assembly
接下来,进入示例目录并运行 iris 示例脚本:
cd example
./iris
最后,查看结果:
cat iris.output/step_03
如果一切顺利,您应该会看到四个用于分类 irises 的决策树的 JSON 表示。
3. 应用案例和最佳实践
3.1 使用 Brushfire 进行分布式计算
Brushfire 当前支持使用 Scalding/Hadoop 作为分布式计算平台。以下是一个简单的例子,展示如何通过继承 TrainerJob
并覆盖 trainer
方法来使用 Brushfire。
import com.stripe.brushfire._
import com.stripe.brushfire.scalding._
import com.twitter.scalding._
class MyJob(args: Args) extends TrainerJob(args) {
import JsonInjections._
def trainingData: TypedPipe[Instance[K, V, T]] = ???
def trainer = Trainer(trainingData, KFoldSampler(4)).expandTimes(args("output"), 5)
}
您需要提供一个 trainingData
的实例,这是一个包含 Instance
对象的 TypedPipe
。Instance
对象包含唯一标识符、时间戳、特征映射和目标值。
3.2 特征和目标类型
Brushfire 支持多种特征和目标类型。对于特征,推荐使用 Dispatched[Int, String, Double, String]
,这样可以匹配四种不同的特征值类型:Ordinal
(有序数值),Nominal
(命名分类),Continuous
(连续数值)和 Sparse
(稀疏分类)。
对于目标值,目前内置的支持仅限于 Map[L, Long]
类型,其中 L
代表标签类型(例如,二分类中的 Boolean
或多分类中的 String
),而 Long
值代表实例的权重,通常为 1。
3.3 扩展小节点
在分布式算法扩展到足够深度后,您可能希望通过调用 expandSmallNodes
方法对任何足够小的节点进行进一步的内存中扩展。
val implicit stopper = FrequencyStopper(10000, 10)
trainer.expandInMemory(args("output") + "/mem", 100)
请注意,分布式算法会在内存中算法希望停止的相同实例计数处停止扩展。
4. 典型生态项目
目前 Brushfire 支持的分布式计算平台主要是 Scalding/Hadoop。但是,未来的计划中包括支持回归树、CHAID 类型的多路分裂、基于错误的剪枝,以及更多评估分裂和树的方法,同时也会支持 Spark 和单节点内存平台。
以上就是 Brushfire 的开源项目教程,希望对您有所帮助。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









