AFLplusplus项目中QEMU持久化模式与libcompcov兼容性问题分析
背景介绍
在AFLplusplus项目中,QEMU持久化模式(Persistent Mode)和libcompcov是两个强大的功能组件。QEMU持久化模式允许模糊测试在目标程序的特定位置反复执行,而不需要每次都重新启动程序,这对于包含无限循环的服务程序特别有用。而libcompcov则是一个用于处理复杂比较操作(如magic byte比较)的库,能够显著提高模糊测试在这些场景下的效率。
问题现象
当尝试同时使用这两个功能时,会出现一个明显的兼容性问题:虽然libcompcov似乎能够正常工作,但模糊测试器却无法记录任何新的代码路径发现("last new find : none yet")。这表明覆盖率收集机制出现了问题。
技术分析
经过深入分析,这个问题源于QEMU持久化模式的内存快照机制与libcompcov的工作方式之间的冲突:
-
QEMU持久化模式:在持久化模式下,QEMU会保存和恢复目标程序的内存状态,包括共享内存区域。这使得模糊测试可以在特定代码位置反复执行,而无需重新启动程序。
-
libcompcov:这个库通过运行时插桩来记录比较操作的覆盖率信息,它需要在目标程序的内存空间中运行,并使用特定的共享内存区域来存储覆盖率数据。
当两者同时使用时,QEMU的内存快照机制会错误地将libcompcov使用的共享内存区域也包含在内进行保存和恢复。这导致每次持久化循环后,覆盖率数据被重置,使得模糊测试器无法检测到新的代码路径。
解决方案探讨
目前有几种可能的解决方案:
-
分离使用:在单独的模糊测试节点上分别使用这两个功能。一个节点使用libcompcov进行复杂比较的模糊测试,另一个节点使用QEMU持久化模式进行高效循环。
-
修改QEMU-AFL:可以修改QEMU-AFL的实现,使其在保存和恢复内存快照时排除libcompcov使用的共享内存区域。这将需要深入理解QEMU的内存管理机制和libcompcov的内存使用模式。
-
实现AFL_EXITPOINT:这是一个潜在的新功能,可以指定程序在特定地址退出,从而避免进入无限循环。这将提供另一种方式来控制程序的执行流程,而不需要完全依赖持久化模式。
技术建议
对于遇到类似问题的开发者,建议:
- 首先尝试分离使用这两个功能,评估是否能够满足测试需求。
- 如果必须同时使用,可以考虑修改QEMU-AFL的源代码,排除libcompcov使用的内存区域。
- 关注AFLplusplus项目的更新,未来可能会加入AFL_EXITPOINT等新功能来更好地解决这类问题。
总结
QEMU持久化模式和libcompcov都是AFLplusplus项目中非常有价值的功能,但它们的交互需要特别注意。理解它们的工作原理和潜在冲突,有助于开发者更有效地使用这些高级功能进行模糊测试。随着项目的不断发展,预计未来会有更完善的解决方案来处理这类兼容性问题。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









