AFLplusplus项目中QEMU持久化模式与libcompcov兼容性问题分析
背景介绍
在AFLplusplus项目中,QEMU持久化模式(Persistent Mode)和libcompcov是两个强大的功能组件。QEMU持久化模式允许模糊测试在目标程序的特定位置反复执行,而不需要每次都重新启动程序,这对于包含无限循环的服务程序特别有用。而libcompcov则是一个用于处理复杂比较操作(如magic byte比较)的库,能够显著提高模糊测试在这些场景下的效率。
问题现象
当尝试同时使用这两个功能时,会出现一个明显的兼容性问题:虽然libcompcov似乎能够正常工作,但模糊测试器却无法记录任何新的代码路径发现("last new find : none yet")。这表明覆盖率收集机制出现了问题。
技术分析
经过深入分析,这个问题源于QEMU持久化模式的内存快照机制与libcompcov的工作方式之间的冲突:
-
QEMU持久化模式:在持久化模式下,QEMU会保存和恢复目标程序的内存状态,包括共享内存区域。这使得模糊测试可以在特定代码位置反复执行,而无需重新启动程序。
-
libcompcov:这个库通过运行时插桩来记录比较操作的覆盖率信息,它需要在目标程序的内存空间中运行,并使用特定的共享内存区域来存储覆盖率数据。
当两者同时使用时,QEMU的内存快照机制会错误地将libcompcov使用的共享内存区域也包含在内进行保存和恢复。这导致每次持久化循环后,覆盖率数据被重置,使得模糊测试器无法检测到新的代码路径。
解决方案探讨
目前有几种可能的解决方案:
-
分离使用:在单独的模糊测试节点上分别使用这两个功能。一个节点使用libcompcov进行复杂比较的模糊测试,另一个节点使用QEMU持久化模式进行高效循环。
-
修改QEMU-AFL:可以修改QEMU-AFL的实现,使其在保存和恢复内存快照时排除libcompcov使用的共享内存区域。这将需要深入理解QEMU的内存管理机制和libcompcov的内存使用模式。
-
实现AFL_EXITPOINT:这是一个潜在的新功能,可以指定程序在特定地址退出,从而避免进入无限循环。这将提供另一种方式来控制程序的执行流程,而不需要完全依赖持久化模式。
技术建议
对于遇到类似问题的开发者,建议:
- 首先尝试分离使用这两个功能,评估是否能够满足测试需求。
- 如果必须同时使用,可以考虑修改QEMU-AFL的源代码,排除libcompcov使用的内存区域。
- 关注AFLplusplus项目的更新,未来可能会加入AFL_EXITPOINT等新功能来更好地解决这类问题。
总结
QEMU持久化模式和libcompcov都是AFLplusplus项目中非常有价值的功能,但它们的交互需要特别注意。理解它们的工作原理和潜在冲突,有助于开发者更有效地使用这些高级功能进行模糊测试。随着项目的不断发展,预计未来会有更完善的解决方案来处理这类兼容性问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00