AFLplusplus项目中QEMU持久化模式与libcompcov兼容性问题分析
背景介绍
在AFLplusplus项目中,QEMU持久化模式(Persistent Mode)和libcompcov是两个强大的功能组件。QEMU持久化模式允许模糊测试在目标程序的特定位置反复执行,而不需要每次都重新启动程序,这对于包含无限循环的服务程序特别有用。而libcompcov则是一个用于处理复杂比较操作(如magic byte比较)的库,能够显著提高模糊测试在这些场景下的效率。
问题现象
当尝试同时使用这两个功能时,会出现一个明显的兼容性问题:虽然libcompcov似乎能够正常工作,但模糊测试器却无法记录任何新的代码路径发现("last new find : none yet")。这表明覆盖率收集机制出现了问题。
技术分析
经过深入分析,这个问题源于QEMU持久化模式的内存快照机制与libcompcov的工作方式之间的冲突:
-
QEMU持久化模式:在持久化模式下,QEMU会保存和恢复目标程序的内存状态,包括共享内存区域。这使得模糊测试可以在特定代码位置反复执行,而无需重新启动程序。
-
libcompcov:这个库通过运行时插桩来记录比较操作的覆盖率信息,它需要在目标程序的内存空间中运行,并使用特定的共享内存区域来存储覆盖率数据。
当两者同时使用时,QEMU的内存快照机制会错误地将libcompcov使用的共享内存区域也包含在内进行保存和恢复。这导致每次持久化循环后,覆盖率数据被重置,使得模糊测试器无法检测到新的代码路径。
解决方案探讨
目前有几种可能的解决方案:
-
分离使用:在单独的模糊测试节点上分别使用这两个功能。一个节点使用libcompcov进行复杂比较的模糊测试,另一个节点使用QEMU持久化模式进行高效循环。
-
修改QEMU-AFL:可以修改QEMU-AFL的实现,使其在保存和恢复内存快照时排除libcompcov使用的共享内存区域。这将需要深入理解QEMU的内存管理机制和libcompcov的内存使用模式。
-
实现AFL_EXITPOINT:这是一个潜在的新功能,可以指定程序在特定地址退出,从而避免进入无限循环。这将提供另一种方式来控制程序的执行流程,而不需要完全依赖持久化模式。
技术建议
对于遇到类似问题的开发者,建议:
- 首先尝试分离使用这两个功能,评估是否能够满足测试需求。
- 如果必须同时使用,可以考虑修改QEMU-AFL的源代码,排除libcompcov使用的内存区域。
- 关注AFLplusplus项目的更新,未来可能会加入AFL_EXITPOINT等新功能来更好地解决这类问题。
总结
QEMU持久化模式和libcompcov都是AFLplusplus项目中非常有价值的功能,但它们的交互需要特别注意。理解它们的工作原理和潜在冲突,有助于开发者更有效地使用这些高级功能进行模糊测试。随着项目的不断发展,预计未来会有更完善的解决方案来处理这类兼容性问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00