Loguru项目中获取格式化异常堆栈的技术实现
2025-05-10 21:14:31作者:郜逊炳
背景介绍
Loguru是一个Python日志库,以其简单易用和强大的功能受到开发者欢迎。在实际应用中,我们经常需要将日志信息序列化为JSON格式,以便于后续处理和存储。然而,Loguru默认提供的异常堆栈信息格式较为简单,无法直接获取其内置的格式化异常堆栈。
问题分析
在日志记录过程中,特别是处理异常时,我们通常需要详细的堆栈跟踪信息。Loguru内部使用了一个名为better_exceptions的库来格式化异常输出,但官方并未提供直接获取这些格式化结果的API。
技术解决方案
基础实现
通过深入分析Loguru源码,我们发现可以通过其内部模块_better_exceptions中的ExceptionFormatter类来实现格式化异常堆栈的获取:
from loguru._better_exceptions import ExceptionFormatter
def get_formatted_traceback(exc_type, exc_value, exc_traceback):
formatter = ExceptionFormatter(backtrace=True, diagnose=True)
return '\n'.join(formatter.format_exception(exc_type, exc_value, exc_traceback))
完整日志序列化方案
结合Loguru的序列化功能,我们可以构建一个完整的日志处理方案:
- 时间戳处理:使用ISO 8601格式记录精确到毫秒的时间
- 路径信息处理:提取文件路径、模块名、函数名和行号
- 异常处理:区分普通错误和异常情况
- Jupyter环境适配:特殊处理Jupyter notebook中的日志记录
def serialize(record):
# 获取时间戳
timestamp = record["time"].isoformat(timespec='milliseconds')
# 处理路径信息
file_path = record["file"].path
module_name = record["module"]
function_name = record["function"]
line_number = record["line"]
path_info = f"{module_name}:{function_name}:{line_number}"
# 处理异常信息
error = record["exception"]
if error:
formatter = ExceptionFormatter(backtrace=True, diagnose=True)
formatted_traceback = formatter.format_exception(
error.type, error.value, error.traceback
)
exception = {
"type": error.type.__name__,
"value": str(error.value),
"traceback": "".join(formatted_traceback),
}
else:
exception = None
# 构建日志数据结构
log_data = {
"time": timestamp,
"level": record["level"].name,
"path": path_info,
"message": record["message"],
"exception": exception,
}
return json.dumps(log_data)
彩色日志输出
为了提升日志可读性,我们可以为不同级别的日志添加颜色标记:
def colorize_json_string(json_str):
# 定义颜色代码
colors = {
"DEBUG": "\033[36m", # 青色
"INFO": "\033[37m", # 白色
"WARNING": "\033[33m", # 黄色
"ERROR": "\033[31m", # 红色
"CRITICAL": "\033[37;41m" # 白字红底
}
# 根据日志级别应用不同颜色
level_match = re.search(r'"level": "([^"]+)"', json_str)
if level_match:
level = level_match.group(1)
color = colors.get(level, "\033[0m")
json_str = re.sub(
r'("message": ")(.*?)(")',
rf'\1{color}\2\033[0m\3',
json_str
)
return json_str
实际应用
将上述组件整合到Loguru日志记录器中:
def configure_logger():
logger.remove()
def serialize_record(record):
record["extra"]["serialized"] = colorize_json_string(serialize(record))
logger.patch(serialize_record)
logger.add(
sys.stderr,
format="{extra[serialized]}",
backtrace=True,
diagnose=True
)
return logger
技术要点总结
- 异常堆栈格式化:通过Loguru内部API获取格式化的异常堆栈信息
- 结构化日志:将日志信息转换为结构化的JSON格式
- 环境适配:特殊处理Jupyter notebook等特殊环境
- 可视化增强:为不同级别的日志添加颜色标记,提升可读性
- 性能考虑:仅在需要时格式化异常堆栈,避免不必要的性能开销
注意事项
- 使用内部API(
_better_exceptions)可能存在版本兼容性问题 - 彩色输出在部分终端可能无法正常显示
- 在生产环境中应考虑关闭diagnose选项以避免敏感信息泄露
- 序列化大量日志时应注意性能影响
这种实现方式既保留了Loguru的简洁性,又提供了强大的日志处理能力,特别适合需要结构化日志和详细异常信息的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30