Apache Iceberg 在 Spark 环境下数据读取异常问题分析
问题背景
在 Apache Iceberg 1.7.1 版本与 Spark 3.5.4 集成环境中,用户在使用 PySpark 操作存储在 Nessie 中的 Iceberg 表时,发现数据读取结果异常,并伴随有 Spark executor 进程崩溃(SIGSEGV)的情况。该问题主要出现在特定查询条件下,表现为读取结果与底层 Parquet 文件实际存储数据不一致。
环境配置
该问题出现在以下技术栈环境中:
- 硬件架构:aarch64
- Java 版本:OpenJDK 17.0.13
- 大数据组件:Spark 3.5.4 + Iceberg 1.7.1 + Nessie 0.101.2
- 运行环境:AWS EKS 集群
关键配置方面,用户启用了 Iceberg 的 Spark Catalog 集成,并配置了 Nessie 作为元数据存储后端。数据存储使用 S3 对象存储,文件格式为 Parquet,采用 ZSTD 压缩。
问题现象
用户报告的核心问题表现为:
-
数据读取不一致:当查询特定分区(dt='2025-01-26'且pt_col1='val2')时,返回结果中出现了本应不存在的distinct_id2=0的记录,而实际Parquet文件中这些记录的distinct_id2值均≥1。
-
进程崩溃问题:在执行某些特定查询时,Spark executor 会随机出现 SIGSEGV 错误导致进程崩溃。崩溃情况包括四种不同的堆栈轨迹,主要涉及Java虚拟机内部的内存访问问题。
-
问题可重现性:问题具有稳定的重现性,在相同查询条件下总是返回相同错误结果,且崩溃情况也呈现一定规律性。
技术分析
从问题现象和错误日志分析,可以得出以下技术要点:
-
数据一致性层面:底层Parquet文件数据正确,但通过Iceberg读取时出现不一致,这表明问题可能出在元数据处理或查询执行路径上,而非数据写入过程。
-
崩溃原因分析:四种不同的SIGSEGV错误表明存在内存访问问题,可能涉及:
- JVM符号表处理异常
- Netty内部线程本地存储访问问题
- 内存屏障处理异常
- 弱引用处理过程中的崩溃
-
特定性表现:问题仅出现在特定分区组合下,且错误记录数量与总记录数存在固定关系(num_rows_incorrect = num_total_rows - 5000),暗示可能存在某种边界条件或缓冲区处理问题。
解决方案
该问题已在Iceberg 1.8.0版本中得到修复。对于遇到类似问题的用户,建议采取以下措施:
-
版本升级:将Iceberg升级至1.8.0或更高版本,这是最直接的解决方案。
-
临时规避措施:如果无法立即升级,可以考虑:
- 避免使用特定查询模式(如ORDER BY等可能触发问题的操作)
- 对问题分区数据进行重写或转换处理
- 调整JVM参数增加内存稳定性
-
监控措施:在生产环境中加强对数据一致性的校验机制,特别是对关键业务数据的双重验证。
经验总结
这一案例为大数据技术栈集成提供了重要经验:
-
版本兼容性:在复杂技术栈(Spark+Iceberg+Nessie)集成时,需要特别注意各组件的版本兼容性。
-
ARM架构考量:问题出现在aarch64架构环境,提醒我们在非x86架构上部署时需进行更全面的测试。
-
数据验证机制:即使底层存储数据正确,查询层仍可能出现问题,因此需要建立端到端的数据验证流程。
-
问题诊断方法:当遇到类似数据不一致问题时,可采取以下诊断步骤:
- 首先验证底层文件数据是否正确
- 检查不同查询模式下的行为差异
- 收集完整的错误日志和核心转储
- 尝试简化问题场景进行隔离测试
这一问题的发现和解决过程,体现了开源社区协作的价值,也为类似场景下的问题排查提供了参考范例。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00