Distilabel项目:简化自定义数据处理步骤的Callable功能设计
2025-06-29 21:18:15作者:曹令琨Iris
在Distilabel项目中,开发者们正在讨论如何简化自定义数据处理步骤的实现方式。目前,用户需要通过定义完整的CustomStep类或使用装饰器来实现自定义数据处理逻辑,这种方式虽然功能强大,但对于简单场景显得过于繁琐。
当前实现方式需要用户创建一个完整的步骤类或使用@step装饰器定义函数,并明确指定输入输出。例如,用户需要编写类似以下的代码:
from distilabel.steps import step
from distilabel.steps.typing import GeneratorStepOutput
@step(outputs=["..."], step_type="generator")
def CustomGeneratorStep(offset: int = 0) -> GeneratorStepOutput:
yield (
...,
True if offset == 10 else False,
)
这种实现方式虽然结构清晰,但对于简单的数据处理任务来说显得过于重量级。为此,项目团队考虑引入更轻量级的Callable功能,允许用户直接传入自定义函数作为处理逻辑。
新提出的Callable功能设计允许用户以更简洁的方式实现相同功能:
from distilabel.steps import Callable
def my_function(sample: dict):
del sample["key"]
sample["c"] = sample["a"] + sample["b"]
return sample
Callable(
name="callable",
fn=my_function,
inputs=["key", "a", "b"],
outputs=["c"]
)
这种设计本质上是一种语法糖,它底层仍然会转换为标准的步骤实现,但为用户提供了更直观的接口。技术实现上,Callable类会负责将用户提供的函数包装成符合Distilabel步骤规范的处理器,同时处理输入输出的验证和类型转换等工作。
这种改进特别适合以下场景:
- 简单的数据转换和计算
- 快速原型开发阶段
- 教育演示场景
- 小型数据处理任务
值得注意的是,这种设计并非要完全替代现有的步骤定义方式,而是作为一种补充,为用户提供更多选择。对于复杂的数据处理逻辑,仍然推荐使用完整的步骤定义方式。
项目团队在讨论中强调了保持API简洁的重要性,避免引入不必要的抽象层。这种平衡易用性和灵活性的设计理念,正是Distilabel项目持续优化用户体验的体现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217