Distilabel项目:简化自定义数据处理步骤的Callable功能设计
2025-06-29 10:08:07作者:曹令琨Iris
在Distilabel项目中,开发者们正在讨论如何简化自定义数据处理步骤的实现方式。目前,用户需要通过定义完整的CustomStep类或使用装饰器来实现自定义数据处理逻辑,这种方式虽然功能强大,但对于简单场景显得过于繁琐。
当前实现方式需要用户创建一个完整的步骤类或使用@step装饰器定义函数,并明确指定输入输出。例如,用户需要编写类似以下的代码:
from distilabel.steps import step
from distilabel.steps.typing import GeneratorStepOutput
@step(outputs=["..."], step_type="generator")
def CustomGeneratorStep(offset: int = 0) -> GeneratorStepOutput:
yield (
...,
True if offset == 10 else False,
)
这种实现方式虽然结构清晰,但对于简单的数据处理任务来说显得过于重量级。为此,项目团队考虑引入更轻量级的Callable功能,允许用户直接传入自定义函数作为处理逻辑。
新提出的Callable功能设计允许用户以更简洁的方式实现相同功能:
from distilabel.steps import Callable
def my_function(sample: dict):
del sample["key"]
sample["c"] = sample["a"] + sample["b"]
return sample
Callable(
name="callable",
fn=my_function,
inputs=["key", "a", "b"],
outputs=["c"]
)
这种设计本质上是一种语法糖,它底层仍然会转换为标准的步骤实现,但为用户提供了更直观的接口。技术实现上,Callable类会负责将用户提供的函数包装成符合Distilabel步骤规范的处理器,同时处理输入输出的验证和类型转换等工作。
这种改进特别适合以下场景:
- 简单的数据转换和计算
- 快速原型开发阶段
- 教育演示场景
- 小型数据处理任务
值得注意的是,这种设计并非要完全替代现有的步骤定义方式,而是作为一种补充,为用户提供更多选择。对于复杂的数据处理逻辑,仍然推荐使用完整的步骤定义方式。
项目团队在讨论中强调了保持API简洁的重要性,避免引入不必要的抽象层。这种平衡易用性和灵活性的设计理念,正是Distilabel项目持续优化用户体验的体现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19