Supervision项目中的Mean Average Recall (mAR)指标实现解析
背景介绍
在计算机视觉领域,目标检测模型的评估指标至关重要。Supervision作为一款强大的计算机视觉工具库,近期在其指标体系中新增了Mean Average Recall (mAR)这一重要评估指标。mAR与常见的mAP(Mean Average Precision)指标不同,它专注于模型召回率的表现,为开发者提供了另一种评估模型性能的视角。
mAR指标的核心概念
mAR指标通过计算不同IoU阈值下的平均召回率来评估模型性能。与mAP相比,mAR有以下特点:
-
评估重点不同:mAR关注的是模型找到所有正样本的能力,而mAP则综合考虑了精确率和召回率。
-
计算方式差异:mAR基于召回率-IoU曲线,而mAP基于精确率-召回率曲线。
-
结果表示:mAR通常只报告全局平均值,不像mAP那样会报告不同IoU阈值(如50%、75%)下的结果。
技术实现细节
在Supervision项目中,mAR的实现考虑了以下技术要点:
-
结果类设计:创建了专门的MeanAverageRecallResult类来存储计算结果,该类设计简洁,主要包含全局mAR值和可选的各类别mAR值。
-
默认值处理:当没有有效检测结果时,默认返回1.0作为mAR值,这与mAP的处理方式保持一致。
-
类别级评估:除了全局mAR外,实现还支持计算每个类别的mAR值,为细粒度模型分析提供了可能。
-
性能优化:实现过程中考虑了计算效率,确保在大规模评估时仍能保持良好性能。
实际应用场景
mAR指标特别适用于以下场景:
-
漏检敏感任务:在安全监控等应用中,漏检的代价很高,mAR能更好地反映模型找到所有目标的能力。
-
数据不平衡情况:当数据集中某些类别样本较少时,mAR可以帮助识别模型在这些类别上的表现。
-
模型对比:结合mAP一起使用,mAR可以提供更全面的模型性能评估。
总结
Supervision项目中mAR指标的增加丰富了其评估工具集,为开发者提供了更全面的模型性能分析手段。这一实现不仅考虑了计算效率,还保持了与现有指标体系的一致性,使得开发者可以轻松地在现有工作流中集成mAR评估。随着计算机视觉应用的不断发展,这类专业化的评估指标将帮助开发者构建更可靠、更精准的视觉系统。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00