Supervision项目中的Mean Average Recall (mAR)指标实现解析
背景介绍
在计算机视觉领域,目标检测模型的评估指标至关重要。Supervision作为一款强大的计算机视觉工具库,近期在其指标体系中新增了Mean Average Recall (mAR)这一重要评估指标。mAR与常见的mAP(Mean Average Precision)指标不同,它专注于模型召回率的表现,为开发者提供了另一种评估模型性能的视角。
mAR指标的核心概念
mAR指标通过计算不同IoU阈值下的平均召回率来评估模型性能。与mAP相比,mAR有以下特点:
-
评估重点不同:mAR关注的是模型找到所有正样本的能力,而mAP则综合考虑了精确率和召回率。
-
计算方式差异:mAR基于召回率-IoU曲线,而mAP基于精确率-召回率曲线。
-
结果表示:mAR通常只报告全局平均值,不像mAP那样会报告不同IoU阈值(如50%、75%)下的结果。
技术实现细节
在Supervision项目中,mAR的实现考虑了以下技术要点:
-
结果类设计:创建了专门的MeanAverageRecallResult类来存储计算结果,该类设计简洁,主要包含全局mAR值和可选的各类别mAR值。
-
默认值处理:当没有有效检测结果时,默认返回1.0作为mAR值,这与mAP的处理方式保持一致。
-
类别级评估:除了全局mAR外,实现还支持计算每个类别的mAR值,为细粒度模型分析提供了可能。
-
性能优化:实现过程中考虑了计算效率,确保在大规模评估时仍能保持良好性能。
实际应用场景
mAR指标特别适用于以下场景:
-
漏检敏感任务:在安全监控等应用中,漏检的代价很高,mAR能更好地反映模型找到所有目标的能力。
-
数据不平衡情况:当数据集中某些类别样本较少时,mAR可以帮助识别模型在这些类别上的表现。
-
模型对比:结合mAP一起使用,mAR可以提供更全面的模型性能评估。
总结
Supervision项目中mAR指标的增加丰富了其评估工具集,为开发者提供了更全面的模型性能分析手段。这一实现不仅考虑了计算效率,还保持了与现有指标体系的一致性,使得开发者可以轻松地在现有工作流中集成mAR评估。随着计算机视觉应用的不断发展,这类专业化的评估指标将帮助开发者构建更可靠、更精准的视觉系统。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00