RefineDet.PyTorch 使用教程
2024-09-17 16:46:22作者:管翌锬
1. 项目介绍
RefineDet.PyTorch 是一个高性能的 PyTorch 实现,用于单次细化神经网络的对象检测。该项目基于 Shifeng Zhang 等人在 CVPR2018 上提出的 RefineDet 算法,提供了比官方 Caffe 实现更高的性能。RefineDet 结合了单阶段检测器的速度和两阶段检测器的精度,通过引入 Anchor Refinement Module (ARM) 和 Object Detection Module (ODM) 来提升检测精度。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 PyTorch。你可以通过以下命令安装 PyTorch:
pip install torch torchvision
2.2 克隆项目
克隆 RefineDet.PyTorch 项目到本地:
git clone https://github.com/luuuyi/RefineDet.PyTorch.git
cd RefineDet.PyTorch
2.3 下载数据集
项目支持 VOC 和 COCO 数据集。你可以使用提供的脚本下载数据集:
2.3.1 COCO 数据集
sh data/scripts/COCO2014.sh
2.3.2 VOC 数据集
sh data/scripts/VOC2007.sh
sh data/scripts/VOC2012.sh
2.4 下载预训练模型
下载 VGG-16 的预训练模型:
mkdir weights
cd weights
wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
2.5 训练模型
使用提供的脚本开始训练 RefineDet320 或 RefineDet512:
2.5.1 训练 RefineDet320
sh train_refinedet320.sh
2.5.2 训练 RefineDet512
sh train_refinedet512.sh
2.6 评估模型
训练完成后,可以使用以下脚本评估模型:
sh eval_refinedet.sh
3. 应用案例和最佳实践
3.1 自定义数据集训练
如果你有自定义数据集,可以按照 VOC 数据集的格式准备数据,并在 data/config.py
中进行相应的配置。具体步骤如下:
- 将数据集转换为 VOC 格式。
- 修改
data/config.py
中的HOME
变量为你的数据集路径。 - 根据数据集类别数修改
num_classes
。
3.2 使用 Visdom 进行实时监控
项目支持使用 Visdom 进行实时训练损失的可视化。首先安装 Visdom:
pip install visdom
然后启动 Visdom 服务器:
python -m visdom.server
在训练过程中,打开浏览器访问 http://localhost:8097/
即可查看实时训练损失。
4. 典型生态项目
4.1 SSD-PyTorch
SSD-PyTorch 是另一个流行的单阶段目标检测框架,与 RefineDet 类似,但更注重速度。你可以通过以下链接访问该项目:
4.2 Faster R-CNN-PyTorch
Faster R-CNN-PyTorch 是一个两阶段目标检测框架,提供了更高的精度。你可以通过以下链接访问该项目:
这些项目可以与 RefineDet.PyTorch 结合使用,以满足不同的检测需求。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie034
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
834
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
33
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
go-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4