RefineDet.PyTorch 使用教程
2024-09-17 15:09:03作者:管翌锬
1. 项目介绍
RefineDet.PyTorch 是一个高性能的 PyTorch 实现,用于单次细化神经网络的对象检测。该项目基于 Shifeng Zhang 等人在 CVPR2018 上提出的 RefineDet 算法,提供了比官方 Caffe 实现更高的性能。RefineDet 结合了单阶段检测器的速度和两阶段检测器的精度,通过引入 Anchor Refinement Module (ARM) 和 Object Detection Module (ODM) 来提升检测精度。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 PyTorch。你可以通过以下命令安装 PyTorch:
pip install torch torchvision
2.2 克隆项目
克隆 RefineDet.PyTorch 项目到本地:
git clone https://github.com/luuuyi/RefineDet.PyTorch.git
cd RefineDet.PyTorch
2.3 下载数据集
项目支持 VOC 和 COCO 数据集。你可以使用提供的脚本下载数据集:
2.3.1 COCO 数据集
sh data/scripts/COCO2014.sh
2.3.2 VOC 数据集
sh data/scripts/VOC2007.sh
sh data/scripts/VOC2012.sh
2.4 下载预训练模型
下载 VGG-16 的预训练模型:
mkdir weights
cd weights
wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
2.5 训练模型
使用提供的脚本开始训练 RefineDet320 或 RefineDet512:
2.5.1 训练 RefineDet320
sh train_refinedet320.sh
2.5.2 训练 RefineDet512
sh train_refinedet512.sh
2.6 评估模型
训练完成后,可以使用以下脚本评估模型:
sh eval_refinedet.sh
3. 应用案例和最佳实践
3.1 自定义数据集训练
如果你有自定义数据集,可以按照 VOC 数据集的格式准备数据,并在 data/config.py 中进行相应的配置。具体步骤如下:
- 将数据集转换为 VOC 格式。
- 修改
data/config.py中的HOME变量为你的数据集路径。 - 根据数据集类别数修改
num_classes。
3.2 使用 Visdom 进行实时监控
项目支持使用 Visdom 进行实时训练损失的可视化。首先安装 Visdom:
pip install visdom
然后启动 Visdom 服务器:
python -m visdom.server
在训练过程中,打开浏览器访问 http://localhost:8097/ 即可查看实时训练损失。
4. 典型生态项目
4.1 SSD-PyTorch
SSD-PyTorch 是另一个流行的单阶段目标检测框架,与 RefineDet 类似,但更注重速度。你可以通过以下链接访问该项目:
4.2 Faster R-CNN-PyTorch
Faster R-CNN-PyTorch 是一个两阶段目标检测框架,提供了更高的精度。你可以通过以下链接访问该项目:
这些项目可以与 RefineDet.PyTorch 结合使用,以满足不同的检测需求。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355