RefineDet.PyTorch 使用教程
2024-09-17 08:02:06作者:管翌锬
1. 项目介绍
RefineDet.PyTorch 是一个高性能的 PyTorch 实现,用于单次细化神经网络的对象检测。该项目基于 Shifeng Zhang 等人在 CVPR2018 上提出的 RefineDet 算法,提供了比官方 Caffe 实现更高的性能。RefineDet 结合了单阶段检测器的速度和两阶段检测器的精度,通过引入 Anchor Refinement Module (ARM) 和 Object Detection Module (ODM) 来提升检测精度。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 PyTorch。你可以通过以下命令安装 PyTorch:
pip install torch torchvision
2.2 克隆项目
克隆 RefineDet.PyTorch 项目到本地:
git clone https://github.com/luuuyi/RefineDet.PyTorch.git
cd RefineDet.PyTorch
2.3 下载数据集
项目支持 VOC 和 COCO 数据集。你可以使用提供的脚本下载数据集:
2.3.1 COCO 数据集
sh data/scripts/COCO2014.sh
2.3.2 VOC 数据集
sh data/scripts/VOC2007.sh
sh data/scripts/VOC2012.sh
2.4 下载预训练模型
下载 VGG-16 的预训练模型:
mkdir weights
cd weights
wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
2.5 训练模型
使用提供的脚本开始训练 RefineDet320 或 RefineDet512:
2.5.1 训练 RefineDet320
sh train_refinedet320.sh
2.5.2 训练 RefineDet512
sh train_refinedet512.sh
2.6 评估模型
训练完成后,可以使用以下脚本评估模型:
sh eval_refinedet.sh
3. 应用案例和最佳实践
3.1 自定义数据集训练
如果你有自定义数据集,可以按照 VOC 数据集的格式准备数据,并在 data/config.py 中进行相应的配置。具体步骤如下:
- 将数据集转换为 VOC 格式。
- 修改
data/config.py中的HOME变量为你的数据集路径。 - 根据数据集类别数修改
num_classes。
3.2 使用 Visdom 进行实时监控
项目支持使用 Visdom 进行实时训练损失的可视化。首先安装 Visdom:
pip install visdom
然后启动 Visdom 服务器:
python -m visdom.server
在训练过程中,打开浏览器访问 http://localhost:8097/ 即可查看实时训练损失。
4. 典型生态项目
4.1 SSD-PyTorch
SSD-PyTorch 是另一个流行的单阶段目标检测框架,与 RefineDet 类似,但更注重速度。你可以通过以下链接访问该项目:
4.2 Faster R-CNN-PyTorch
Faster R-CNN-PyTorch 是一个两阶段目标检测框架,提供了更高的精度。你可以通过以下链接访问该项目:
这些项目可以与 RefineDet.PyTorch 结合使用,以满足不同的检测需求。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.45 K
Ascend Extension for PyTorch
Python
272
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
192
79
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692