HKUSTMDI/mdi-sam-server 项目API接口详解
2025-06-26 08:41:49作者:伍霜盼Ellen
项目概述
HKUSTMDI/mdi-sam-server 是一个基于SAM(Segment Anything Model)模型的服务端实现,提供图像分割相关的API接口。该项目主要面向需要图像分割功能的开发者,通过简单的API调用即可获得专业的图像分割结果。
接口基础信息
请求规范
所有API请求需要遵循以下规范:
- 请求头必须包含:
Content-Type:application/json - 需要身份验证的接口需在请求头中包含token:
token:xxxx - 请求体采用JSON格式
接口列表
项目提供以下三个核心接口:
- predict - SAM模型预测接口,用于获取图像指定位置的mask
- preload - 图片预加载接口,可提高后续predict速度
- health - 健康检查接口
predict接口详解
接口功能
predict接口是项目的核心功能,它基于SAM模型对输入的图像进行分割处理。用户可以通过提供图像URL和提示信息(点或矩形框)来获取精确的分割结果。
请求方式
- 方法:POST
- URL:
${prefix_url}/predict
请求参数
| 参数名 | 类型 | 必填 | 描述 |
|---|---|---|---|
| tasks | JSON | 是 | 包含待处理图片信息的数组 |
| task_id | string | 是 | 任务唯一标识 |
| params | JSON | 是 | 预测参数配置 |
| model_version | string | 否 | SAM模型类型,默认sam_vit_l |
| img_type | string | 否 | 图片类型,默认normal,可选sdpc/svs/tiff/normal |
请求示例
基础请求结构
{
"tasks": [
{
"data": {
"image": "图片URL"
}
}
],
"task_id": "任务ID",
"params": {
"context": {
"result": [
// 提示信息(点或矩形框)
]
}
}
}
提示信息类型
- 点模式(keypointlabels)
{
"original_width": 3840,
"original_height": 2160,
"image_rotation": 0,
"value": {
"x": 80.31,
"y": 43.67,
"width": 0.28,
"keypointlabels": ["标签"]
},
"is_positive": true,
"type": "keypointlabels",
"origin": "manual"
}
- 矩形模式(rectanglelabels)
{
"original_width": 3840,
"original_height": 2160,
"image_rotation": 0,
"value": {
"x": 55,
"y": 44,
"width": 8,
"height": 10,
"rectanglelabels": ["标签"]
},
"type": "rectanglelabels",
"origin": "manual"
}
响应结构
{
"results": [
{
"model_version": "模型信息",
"result": [
{
"id": "结果ID",
"original_height": 2160,
"original_width": 3840,
"score": 0.73,
"type": "brushlabels",
"value": {
"bbox": [1501,570,642,730],
"brushlabels": ["标签"],
"format": "rle",
"rle": [...]
}
}
]
}
]
}
使用场景示例
1. 点提示分割
通过提供正负点提示,引导模型进行精确分割:
{
"tasks": [{"data": {"image": "图片URL"}}],
"params": {
"context": {
"result": [
// 正点1
{"value": {"x":50,"y":50,"keypointlabels":["标签"]},"is_positive":true},
// 正点2
{"value": {"x":44,"y":50,"keypointlabels":["标签"]},"is_positive":true},
// 负点
{"value": {"x":50,"y":40,"keypointlabels":["标签"]},"is_positive":false}
]
}
}
}
2. 矩形提示分割
通过提供矩形区域提示,快速获取目标分割结果:
{
"tasks": [{"data": {"image": "图片URL"}}],
"params": {
"context": {
"result": [
{
"value": {
"x":55,"y":44,"width":8,"height":10,
"rectanglelabels":["标签"]
},
"type":"rectanglelabels"
}
]
}
}
}
3. WSI图像分割
针对大尺寸WSI(Whole Slide Image)图像的特殊处理:
{
"img_type": "sdpc",
"params": {
"context": {
"cur_scale": 1.1,
"result": [
// 可混合使用点和矩形提示
]
}
}
}
preload接口详解
接口功能
preload接口用于预加载图像到模型中,可显著提高后续predict接口的响应速度。但需要注意:WSI类型图片不支持此功能。
请求方式
- 方法:POST/GET
- URL:
${prefix_url}/preload
请求参数
| 参数名 | 类型 | 必填 | 描述 |
|---|---|---|---|
| url | string | 是 | 需要预加载的图片URL |
| task_id | string | 是 | 任务唯一标识 |
使用示例
{
"url": "图片URL",
"task_id": "任务ID"
}
health接口详解
接口功能
简单的健康检查接口,用于验证服务是否正常运行。
请求方式
- 方法:GET
- URL:
${prefix_url}/health
响应示例
{
"code": 200,
"model_class": "SamMLBackend",
"msg": "ok"
}
性能优化建议
- 合理使用preload:对于需要多次处理的普通图片,先调用preload接口可显著提高后续处理速度
- 选择合适的提示类型:点提示适合精细分割,矩形提示适合快速获取大致区域
- 模型版本选择:根据需求平衡精度和速度,较大模型精度更高但速度较慢
- WSI图像处理:注意必须提供cur_scale参数,并正确设置img_type
常见问题
-
Q: WSI图片为什么不能使用preload? A: WSI图片通常体积巨大,预加载会占用大量内存,因此设计为实时处理模式。
-
Q: 如何选择正负点提示? A: 正点应标记在目标区域内,负点应标记在非目标区域但容易被误识别的位置。
-
Q: 分割效果不理想怎么办? A: 可以尝试增加提示点的数量,或调整提示点的位置,必要时可混合使用点和矩形提示。
通过本文的详细讲解,开发者应该能够充分理解并使用HKUSTMDI/mdi-sam-server项目提供的API接口,实现高效的图像分割功能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
200
219
仓颉编译器源码及 cjdb 调试工具。
C++
129
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100