HKUSTMDI/mdi-sam-server 项目API接口详解
2025-06-26 03:49:57作者:伍霜盼Ellen
项目概述
HKUSTMDI/mdi-sam-server 是一个基于SAM(Segment Anything Model)模型的服务端实现,提供图像分割相关的API接口。该项目主要面向需要图像分割功能的开发者,通过简单的API调用即可获得专业的图像分割结果。
接口基础信息
请求规范
所有API请求需要遵循以下规范:
- 请求头必须包含:
Content-Type:application/json - 需要身份验证的接口需在请求头中包含token:
token:xxxx - 请求体采用JSON格式
接口列表
项目提供以下三个核心接口:
- predict - SAM模型预测接口,用于获取图像指定位置的mask
- preload - 图片预加载接口,可提高后续predict速度
- health - 健康检查接口
predict接口详解
接口功能
predict接口是项目的核心功能,它基于SAM模型对输入的图像进行分割处理。用户可以通过提供图像URL和提示信息(点或矩形框)来获取精确的分割结果。
请求方式
- 方法:POST
- URL:
${prefix_url}/predict
请求参数
| 参数名 | 类型 | 必填 | 描述 |
|---|---|---|---|
| tasks | JSON | 是 | 包含待处理图片信息的数组 |
| task_id | string | 是 | 任务唯一标识 |
| params | JSON | 是 | 预测参数配置 |
| model_version | string | 否 | SAM模型类型,默认sam_vit_l |
| img_type | string | 否 | 图片类型,默认normal,可选sdpc/svs/tiff/normal |
请求示例
基础请求结构
{
"tasks": [
{
"data": {
"image": "图片URL"
}
}
],
"task_id": "任务ID",
"params": {
"context": {
"result": [
// 提示信息(点或矩形框)
]
}
}
}
提示信息类型
- 点模式(keypointlabels)
{
"original_width": 3840,
"original_height": 2160,
"image_rotation": 0,
"value": {
"x": 80.31,
"y": 43.67,
"width": 0.28,
"keypointlabels": ["标签"]
},
"is_positive": true,
"type": "keypointlabels",
"origin": "manual"
}
- 矩形模式(rectanglelabels)
{
"original_width": 3840,
"original_height": 2160,
"image_rotation": 0,
"value": {
"x": 55,
"y": 44,
"width": 8,
"height": 10,
"rectanglelabels": ["标签"]
},
"type": "rectanglelabels",
"origin": "manual"
}
响应结构
{
"results": [
{
"model_version": "模型信息",
"result": [
{
"id": "结果ID",
"original_height": 2160,
"original_width": 3840,
"score": 0.73,
"type": "brushlabels",
"value": {
"bbox": [1501,570,642,730],
"brushlabels": ["标签"],
"format": "rle",
"rle": [...]
}
}
]
}
]
}
使用场景示例
1. 点提示分割
通过提供正负点提示,引导模型进行精确分割:
{
"tasks": [{"data": {"image": "图片URL"}}],
"params": {
"context": {
"result": [
// 正点1
{"value": {"x":50,"y":50,"keypointlabels":["标签"]},"is_positive":true},
// 正点2
{"value": {"x":44,"y":50,"keypointlabels":["标签"]},"is_positive":true},
// 负点
{"value": {"x":50,"y":40,"keypointlabels":["标签"]},"is_positive":false}
]
}
}
}
2. 矩形提示分割
通过提供矩形区域提示,快速获取目标分割结果:
{
"tasks": [{"data": {"image": "图片URL"}}],
"params": {
"context": {
"result": [
{
"value": {
"x":55,"y":44,"width":8,"height":10,
"rectanglelabels":["标签"]
},
"type":"rectanglelabels"
}
]
}
}
}
3. WSI图像分割
针对大尺寸WSI(Whole Slide Image)图像的特殊处理:
{
"img_type": "sdpc",
"params": {
"context": {
"cur_scale": 1.1,
"result": [
// 可混合使用点和矩形提示
]
}
}
}
preload接口详解
接口功能
preload接口用于预加载图像到模型中,可显著提高后续predict接口的响应速度。但需要注意:WSI类型图片不支持此功能。
请求方式
- 方法:POST/GET
- URL:
${prefix_url}/preload
请求参数
| 参数名 | 类型 | 必填 | 描述 |
|---|---|---|---|
| url | string | 是 | 需要预加载的图片URL |
| task_id | string | 是 | 任务唯一标识 |
使用示例
{
"url": "图片URL",
"task_id": "任务ID"
}
health接口详解
接口功能
简单的健康检查接口,用于验证服务是否正常运行。
请求方式
- 方法:GET
- URL:
${prefix_url}/health
响应示例
{
"code": 200,
"model_class": "SamMLBackend",
"msg": "ok"
}
性能优化建议
- 合理使用preload:对于需要多次处理的普通图片,先调用preload接口可显著提高后续处理速度
- 选择合适的提示类型:点提示适合精细分割,矩形提示适合快速获取大致区域
- 模型版本选择:根据需求平衡精度和速度,较大模型精度更高但速度较慢
- WSI图像处理:注意必须提供cur_scale参数,并正确设置img_type
常见问题
-
Q: WSI图片为什么不能使用preload? A: WSI图片通常体积巨大,预加载会占用大量内存,因此设计为实时处理模式。
-
Q: 如何选择正负点提示? A: 正点应标记在目标区域内,负点应标记在非目标区域但容易被误识别的位置。
-
Q: 分割效果不理想怎么办? A: 可以尝试增加提示点的数量,或调整提示点的位置,必要时可混合使用点和矩形提示。
通过本文的详细讲解,开发者应该能够充分理解并使用HKUSTMDI/mdi-sam-server项目提供的API接口,实现高效的图像分割功能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
287
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
226
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
439
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19